Exploring the prediction performance for breast cancer risk based on volumetric mammographic density at different thresholds
Author:
Funder
Cancer Research UK
Programme Grants for Applied Research
Genesis Prevention Appeal
Publisher
Springer Science and Business Media LLC
Link
http://link.springer.com/content/pdf/10.1186/s13058-018-0979-x.pdf
Reference22 articles.
1. Assi V, Warwick J, Cuzick J, Duffy SW. Clinical and epidemiological issues in mammographic density. Nat Rev Clin Oncol. 2012;9(1):33–40.
2. Hopper JL. Odds per adjusted standard deviation: comparing strengths of associations for risk factors measured on different scales and across diseases and populations. Am J Epidemiol. 2015;182(10):863–7.
3. Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ. The quantitative-analysis of mammographic densities. Phys Med Biol. 1994;39(10):1629–38.
4. Nguyen TL, Aung YK, Evans CF, Yoon-Ho C, Jenkins MA, Sung J, Hopper JL, Song Y-M. Mammographic density defined by higher than conventional brightness threshold better predicts breast cancer risk for full-field digital mammograms. Breast Cancer Res. 2015;17:1-9.
5. Nguyen TL, Choi Y-H, Aung YK, Evans CF, Trinh NH, Li S, Dite GS, Kim MS, Brennan PC, Jenkins MA, et al. Breast cancer risk associations with digital mammographic Density by pixel brightness threshold and mammographic system. Radiology. 2018;286(2):433–42.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Breast cancer risk prediction combining a convolutional neural network-based mammographic evaluation with clinical factors;Breast Cancer Research and Treatment;2023-05-20
2. Impact of a Deep Learning Model for Predicting Mammographic Breast Density in Routine Clinical Practice;Journal of the American College of Radiology;2022-09
3. Quantitative breast density analysis to predict interval and node-positive cancers in pursuit of improved screening protocols: a case–control study;British Journal of Cancer;2021-06-24
4. Going Beyond Conventional Mammographic Density to Discover Novel Mammogram-Based Predictors of Breast Cancer Risk;Journal of Clinical Medicine;2020-02-26
5. Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts;Computer Methods and Programs in Biomedicine;2019-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3