Deep learning-based risk stratification of preoperative breast biopsies using digital whole slide images

Author:

Boissin Constance,Wang Yinxi,Sharma Abhinav,Weitz Philippe,Karlsson Emelie,Robertson Stephanie,Hartman Johan,Rantalainen Mattias

Abstract

Abstract Background Nottingham histological grade (NHG) is a well established prognostic factor in breast cancer histopathology but has a high inter-assessor variability with many tumours being classified as intermediate grade, NHG2. Here, we evaluate if DeepGrade, a previously developed model for risk stratification of resected tumour specimens, could be applied to risk-stratify tumour biopsy specimens. Methods A total of 11,955,755 tiles from 1169 whole slide images of preoperative biopsies from 896 patients diagnosed with breast cancer in Stockholm, Sweden, were included. DeepGrade, a deep convolutional neural network model, was applied for the prediction of low- and high-risk tumours. It was evaluated against clinically assigned grades NHG1 and NHG3 on the biopsy specimen but also against the grades assigned to the corresponding resection specimen using area under the operating curve (AUC). The prognostic value of the DeepGrade model in the biopsy setting was evaluated using time-to-event analysis. Results Based on preoperative biopsy images, the DeepGrade model predicted resected tumour cases of clinical grades NHG1 and NHG3 with an AUC of 0.908 (95% CI: 0.88; 0.93). Furthermore, out of the 432 resected clinically-assigned NHG2 tumours, 281 (65%) were classified as DeepGrade-low and 151 (35%) as DeepGrade-high. Using a multivariable Cox proportional hazards model the hazard ratio between DeepGrade low- and high-risk groups was estimated as 2.01 (95% CI: 1.06; 3.79). Conclusions DeepGrade provided prediction of tumour grades NHG1 and NHG3 on the resection specimen using only the biopsy specimen. The results demonstrate that the DeepGrade model can provide decision support to identify high-risk tumours based on preoperative biopsies, thus improving early treatment decisions.

Funder

Karolinska Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3