Development and validation of an AI-enabled digital breast cancer assay to predict early-stage breast cancer recurrence within 6 years

Author:

Fernandez Gerardo,Prastawa Marcel,Madduri Abishek Sainath,Scott Richard,Marami Bahram,Shpalensky Nina,Cascetta Krystal,Sawyer Mary,Chan Monica,Koll Giovanni,Shtabsky Alexander,Feliz Aaron,Hansen Thomas,Veremis Brandon,Cordon-Cardo Carlos,Zeineh Jack,Donovan Michael J.

Abstract

Abstract Background Breast cancer (BC) grading plays a critical role in patient management despite the considerable inter- and intra-observer variability, highlighting the need for decision support tools to improve reproducibility and prognostic accuracy for use in clinical practice. The objective was to evaluate the ability of a digital artificial intelligence (AI) assay (PDxBr) to enrich BC grading and improve risk categorization for predicting recurrence. Methods In our population-based longitudinal clinical development and validation study, we enrolled 2075 patients from Mount Sinai Hospital with infiltrating ductal carcinoma of the breast. With 3:1 balanced training and validation cohorts, patients were retrospectively followed for a median of 6 years. The main outcome was to validate an automated BC phenotyping system combined with clinical features to produce a binomial risk score predicting BC recurrence at diagnosis. Results The PDxBr training model (n = 1559 patients) had a C-index of 0.78 (95% CI, 0.76–0.81) versus clinical 0.71 (95% CI, 0.67–0.74) and image feature models 0.72 (95% CI, 0.70–0.74). A risk score of 58 (scale 0–100) stratified patients as low or high risk, hazard ratio (HR) 5.5 (95% CI 4.19–7.2, p < 0.001), with a sensitivity 0.71, specificity 0.77, NPV 0.95, and PPV 0.32 for predicting BC recurrence within 6 years. In the validation cohort (n = 516), the C-index was 0.75 (95% CI, 0.72–0.79) versus clinical 0.71 (95% CI 0.66–0.75) versus image feature models 0.67 (95% CI, 0.63–071). The validation cohort had an HR of 4.4 (95% CI 2.7–7.1, p < 0.001), sensitivity of 0.60, specificity 0.77, NPV 0.94, and PPV 0.24 for predicting BC recurrence within 6 years. PDxBr also improved Oncotype Recurrence Score (RS) performance: RS 31 cutoff, C-index of 0.36 (95% CI 0.26–0.45), sensitivity 37%, specificity 48%, HR 0.48, p = 0.04 versus Oncotype RS plus AI-grade C-index 0.72 (95% CI 0.67–0.79), sensitivity 78%, specificity 49%, HR 4.6, p < 0.001 versus Oncotype RS plus PDxBr, C-index 0.76 (95% CI 0.70–0.82), sensitivity 67%, specificity 80%, HR 6.1, p < 0.001. Conclusions PDxBr is a digital BC test combining automated AI-BC prognostic grade with clinical–pathologic features to predict the risk of early-stage BC recurrence. With future validation studies, we anticipate the PDxBr model will enrich current gene expression assays and enhance treatment decision-making.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3