Multiple roles for Bcl-3 in mammary gland branching, stromal collagen invasion, involution and tumor pathology

Author:

Carr David,Zein Aiman,Coulombe Josée,Jiang Tianqi,Cabrita Miguel A.,Ward Gwendoline,Daneshmand Manijeh,Sau Andrea,Pratt M. A. ChristineORCID

Abstract

Abstract Background The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. Methods We utilized bcl-3−/− mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3−/− organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. Results Bcl-3−/− mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3−/− mammary organoid cultures. Bcl-3−/− organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3−/− glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3−/− glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3−/− lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. Conclusions Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3−/− mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.

Funder

Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Clarkson RW, Watson CJ. NF-kappaB and apoptosis in mammary epithelial cells. J Mammary Gland Biol Neoplasia. 1999;4:165–75.

2. Cao Y, Karin M. NF-kappaB in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia. 2003;8:215–23.

3. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25:6680–4.

4. Zhang Q, Didonato JA, Karin M, McKeithan TW. BCL3 encodes a nuclear protein which can alter the subcellular location of NF-kappa B proteins. Mol Cell Biol. 1994;14:3915–26.

5. Nolan GP, Fujita T, Bhatia K, Huppi C, Liou HC, Scott ML, et al. The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner. Mol Cell Biol. 1993;13:3557–66.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3