A risk analysis of alpelisib-induced hyperglycemia in patients with advanced solid tumors and breast cancer

Author:

Rodón Jordi,Demanse David,Rugo Hope S.,Burris Howard A.,Simó Rafael,Farooki Azeez,Wellons Melissa F.,André Fabrice,Hu Huilin,Vuina Dragica,Quadt Cornelia,Juric Dejan

Abstract

Abstract Background Hyperglycemia is an on-target effect of PI3Kα inhibitors. Early identification and intervention of treatment-induced hyperglycemia is important for improving management of patients receiving a PI3Kα inhibitor like alpelisib. Here, we characterize incidence of grade 3/4 alpelisib-related hyperglycemia, along with time to event, management, and outcomes using a machine learning model. Methods Data for the risk model were pooled from patients receiving alpelisib ± fulvestrant in the open-label, phase 1 X2101 trial and the randomized, double-blind, phase 3 SOLAR-1 trial. The pooled population (n = 505) included patients with advanced solid tumors (X2101, n = 221) or HR+/HER2− advanced breast cancer (SOLAR-1, n = 284). External validation was performed using BYLieve trial patient data (n = 340). Hyperglycemia incidence and management were analyzed for SOLAR-1. Results A random forest model identified 5 baseline characteristics most associated with risk of developing grade 3/4 hyperglycemia (fasting plasma glucose, body mass index, HbA1c, monocytes, age). This model was used to derive a score to classify patients as high or low risk for developing grade 3/4 hyperglycemia. Applying the model to patients treated with alpelisib and fulvestrant in SOLAR-1 showed higher incidence of hyperglycemia (all grade and grade 3/4), increased use of antihyperglycemic medications, and more discontinuations due to hyperglycemia (16.7% vs. 2.6% of discontinuations) in the high- versus low-risk group. Among patients in SOLAR-1 (alpelisib + fulvestrant arm) with PIK3CA mutations, median progression-free survival was similar between the high- and low-risk groups (11.0 vs. 10.9 months). For external validation, the model was applied to the BYLieve trial, for which successful classification into high- and low-risk groups with shorter time to grade 3/4 hyperglycemia in the high-risk group was observed. Conclusions A risk model using 5 clinically relevant baseline characteristics was able to identify patients at higher or lower probability for developing alpelisib-induced hyperglycemia. Early identification of patients who may be at higher risk for hyperglycemia may improve management (including monitoring and early intervention) and potentially lead to improved outcomes. Registration: ClinicalTrials.gov: NCT01219699 (registration date: October 13, 2010; retrospectively registered), ClinicalTrials.gov: NCT02437318 (registration date: May 7, 2015); ClinicalTrials.gov: NCT03056755 (registration date: February 17, 2017).

Funder

Novartis Pharmaceuticals Corporation

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3