The ultra-early protective effect of ulinastatin on rabbit acute lung injury induced by paraquat

Author:

Song Zujun,Chen Gaofei,Lin Gang,Jia Chiyu,Cao Jianxia,Ao Guokun

Abstract

Abstract Objective To study ultra-early pathophysiological changes of rabbit acute lung injury (ALI) caused by paraquat (PQ) and discuss the ultra-early protective effect of ulinastatin on rabbit ALI due to PQ. Methods 30 New Zealand white rabbits were randomly divided into a control group, a paraquat group and an ulinastatin intervention group with 10 rabbits in each group. For paraquat group and intervention group a single dose of paraquat (35mg/kg) was injected intraperitoneally to establish rabbit models of ALI. The control group was injected an equal volume of saline. The intervention group was treated with 100Ku/kg ulinastatin immediately after the establishment of the ALI model. The respective experimental groups underwent 320-slice CT perfusion scan of pleural at 2h, 4h and 6h time point after modeling to get CTP (CT Perfusion) images and related parameters. 2mL blood was collected in the marginal ear vein to determine the mass concentration of the vascular endothelial growth factor (VEGF). The animals were killed by air embolism after 6h and lung tissue was taken for pathology observation. Results The reginal blood flow (rBF) and reginal blood volume (rBV) of paraquat group at 2,4,6 h time point were significantly (P <0.05) lower than those of control group. The intervention group rBF and rBV at 2, 4 and 6 h time points were significantly higher (P <0.05) compared to paraquat group. The permeability surface (rPS) and VEGF mass concentration of paraquat group at 2,4,6 h time point were significantly higher than the control group (P <0.05), and the intervention group rPS and VEGF mass concentrations at 2,4,6h time point were significantly lower (P <0.05) than those of paraquat group. Pathological detection indicators of paraquat group (congestive capillary percentage, the number of red blood cells outside of capillaries, percentage of capillaries with basement membrane damage) were significantly higher (P <0.05) at 6h time point compared with the control group, while significantly lower (P <0.05) in intervention group than in paraquat groups. Pathological observation under light microscope showed in paraquat group obvious inflammatory cell infiltration, alveolar epithelial cell hyperplasia, widened alveolar septum, visible focal hemorrhage, visible acute and chronic inflammatory cell infiltration in bronchioles cavity; under electron microscopy alveolar epithelial cell degeneration and necrosis, vascular welling of the endothelial cells, basement membrane rupture, a lot of exudates in alveolar space. In the intervention group, the above the symptoms were mitigated. Conclusion In the ultra-early stage of rabbit ALI induced by PQ, pulmonary vascular endothelial cell is damaged and serum VEGF mass concentration and pulmonary vascular permeability increase. Early ulinastatin intervention can reduce serum VEGF level and PQ-induced vascular permeability amplitude, indicating that ulinastatin has a protective effect on pulmonary vascular endothelial cells.

Publisher

Springer Science and Business Media LLC

Subject

Emergency Medicine

Reference14 articles.

1. Inoue K, Takano H: Urinary trypsin inhibitor as a therapeutic option for endotoxin-related inflammatory disorders. Expert Opin Investig Drugs. 2010, 19 (4): 513-20. 10.1517/13543781003649533.

2. Ulinastatin protects pulmonary tissues from lipopolysacchride-induced injury as an immunomodulator. J Trauma Acute Care Surg. 2012, 72 (1): 169-76.

3. Zhiyong Piao: Protective effect of ulinastatin on paraquat poisoning acute lung injury in rabbits. Yunyang Medical College Journal. 2008, 27 (2): 227-

4. Zongfeng Hu, Haichen Sun: The mechanism of inflammatory mediators of vascular endothelial cells in acute lung injury. Trauma Surgery. 2009, 11 (3): 281-

5. Zhou XH, Dai QC, Huang XL: Neutrophils in acute lung injury. Front Biosci. 2012, 17: 2278-83. 10.2741/4051.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3