Factors affecting pediatric isotonic fluid resuscitation efficiency: a randomized controlled trial evaluating the impact of syringe size
-
Published:2013-07-24
Issue:1
Volume:13
Page:
-
ISSN:1471-227X
-
Container-title:BMC Emergency Medicine
-
language:en
-
Short-container-title:BMC Emerg Med
Author:
Harvey Greg,Foster Gary,Manan Asmaa,Thabane Lehana,Parker Melissa J
Abstract
Abstract
Background
Goal-directed therapy guidelines for pediatric septic shock resuscitation recommend fluid delivery at speeds in excess of that possible through use of regular fluid infusion pumps. In our experience, syringes are commonly used by health care providers (HCPs) to achieve rapid fluid resuscitation in a pediatric fluid resuscitation scenario. At present, it is unclear which syringe size health care providers should use when performing fluid resuscitation to achieve maximal fluid resuscitation efficiency. The objective of this study was therefore to determine if an optimal syringe size exists for conducting manual pediatric fluid resuscitation.
Methods
This 48-participant parallel group randomized controlled trial included 4 study arms (10, 20, 30, 60 mL syringe size groups). Eligible participants were HCPs from McMaster Children’s Hospital, Hamilton, Canada blinded to the purpose of the trial. Consenting participants were randomized using a third party technique. Following a standardization procedure, participants administered 900 mL (60 mL/kg) of isotonic saline to a simulated 15 kg child using prefilled provided syringes of the allocated size in rapid sequence. Primary outcome was total time to administer the 900 mL and this data was collected through video review by two blinded outcome assessors. Sample size was predetermined based upon a primary outcome analysis using one-way ANOVA.
Results
12 participants were randomized to each group (n=48) and all completed trial protocol to analysis. Analysis was conducted according to intention to treat principles. A significant difference in fluid resuscitation time (in seconds) was found between syringe size group means: 10 mL, 563s [95% CI 521; 606]; 20 mL, 506s [95% CI 64; 548]; 30 mL, 454s [95% CI 412; 596]; 60 mL, 455s [95% CI 413; 497] (p<0.001).
Conclusions
The syringe size used when performing manual pediatric fluid resuscitation has a significant impact on fluid resuscitation speed, in a setting where fluid filled syringes are continuously available. Greatest efficiency was achieved with 30 or 60 mL syringes.
Trial registration
ClinicalTrials.gov, NCT01494116
Publisher
Springer Science and Business Media LLC
Subject
Emergency Medicine
Reference23 articles.
1. Management of shock. Pediatric Advanced Life Support Provider Manual. Edited by: Chameides L, Samson RA, Schexnayder SM, Hazinski MF. 2011, Dallas, Tx: American Heart Association, 85-108. 2. Shock. Advanced trauma life support for doctors student manual. 2008, Chicago, IL: American College of Surgeons Committee on Trauma, 55-71. 8 3. Pediatric Trauma. Advanced trauma life support for doctors student manual. 2008, Chicago, IL: American College of Surgeons Committee on Trauma, 225-246. 8 4. Brierley J, Carcillo JA, Choong K, Cornell T, Decaen A, Deymann A, Doctor A, Davis A, Duff J, Dugas MA, Duncan A, Evans B, Feldman J, Felmet K, Fisher G, Frankel L, Jeffries H, Greenwald B, Gutierrez J, Hall M, Han YY, Hanson J, Hazelzet J, Hernan L, Kiff J, Kissoon N, Kon A, Irazuzta J, Lin J, Lorts A, et al: Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009, 37 (2): 666-688. 10.1097/CCM.0b013e31819323c6. 5. Hodge D, Fleisher G: Pediatric catheter flow rates. Am J Emerg Med. 1985, 3 (5): 403-407. 10.1016/0735-6757(85)90198-6.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|