Abstract
AbstractSilk is produced by a variety of insects, but only silk made by terrestrial arthropods has been examined in detail. To fill the gap, this study was designed to understand the silk spinning system of aquatic insect. The larvae of caddis flies, Hydatophylax nigrovittatus produce silk through a pair of labial silk glands and use raw silk to protect themselves in the aquatic environment. The result of this study clearly shows that although silk fibers are made under aquatic conditions, the cellular silk production system is quite similar to that of terrestrial arthropods. Typically, silk production in caddisworm has been achieved by two independent processes in the silk glands. This includes the synthesis of silk fibroin in the posterior region, the production of adhesive glycoproteins in the anterior region, which are ultimately accumulated into functional silk dope and converted to a silk ribbon coated with gluey substances. At the cellular level, each substance of fibroin and glycoprotein is specifically synthesized at different locations, and then transported from the rough ER to the Golgi apparatus as transport vesicles, respectively. Thereafter, the secretory vesicles gradually increase in size by vesicular fusion, forming larger secretory granules containing specific proteins. It was found that these granules eventually migrate to the apical membrane and are exocytosed into the lumen by a mechanism of merocrine secretion.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. H. Akai, in The Ultrastructure and Functions of the Silk Gland Cells of Bombyx mori, ed. by R. C. King, H. Akai. Insect ultrastructure (Springer, Boston, 1984), pp. 323–364
2. H. Akai, M. Kobayash, Incorporation of labeled thymidine into the silk gland of the silkworm. Nature 206, 847–848 (1965)
3. N.N. Ashton, R.J. Stewart, Aquatic caddisworm silk is solidified by environmental metal ions during the natural fiber-spinning process. FASEB J. 33, 572–583 (2019)
4. N.N. Ashton, D. Taggart, R.J. Stewart, Silk tape nanostructure and silk gland anatomy of trichoptera. Biopolymers 97, 432–445 (2012)
5. N.N. Ashton, C. Wang, R.J. Stewart, in The Adhesive Tape-like Silk of Aquatic Caddisworms. Biological adhesives (Springer, Berlin, 2016), pp. 107–128
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献