Abstract
AbstractThe sliding filament theory and the cross-bridge model have been fundamental in understanding muscle contraction. While the cross-bridge model explains the interaction between a single myosin head and actin filament, the native myosin molecule consists of two heads. This review explores the possibility and mechanism of two-headed binding in myosin II to the actin. Recent studies using electron tomography and resonance energy transfer have provided evidence in support of the occurrence of two-headed binding. The flexibility of the regulatory light chain (RLC) appears to play a significant role in enabling this binding mode. However, high-resolution structures of the RLCs in the two-headed bound state have not yet been reported. Resolving these structures, possibly through sub-tomogram averaging or single-particle analysis, would provide definitive proof of the conformational flexibility of RLCs and their role in facilitating two-headed binding. Further investigations are also required to address questions such as the predominance of two-headed versus single-headed binding and the influence of the state of each of the heads on the other. An understanding of the mechanism of two-headed binding is crucial for developing a comprehensive model of the cross-bridge cycle of the native myosin molecule.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korean government
Korean Basic Science Institute (KBSI) National Research Facilities and Equipment Center (NFEC) grant funded by the Korean government
Publisher
Springer Science and Business Media LLC