An improved Diagnostic PCR Assay for identification of Cryptic Heterozygosity for CGG Triplet Repeat Alleles in the Fragile X Gene (FMR1)

Author:

Khaniani Mahmoud S,Kalitsis Paul,Burgess Trent,Slater Howard R

Abstract

Abstract Background Fragile X syndrome (OMIM #300624) is the most common, recognised, heritable cause of mental retardation. Widespread testing is warranted by the relatively high frequency of the disorder, the benefits of early detection and the identification of related carriers whose offspring are at a 1 in 2 risk of inheriting the expanded pathogenic mutation. However, cost-effective screening of mentally retarded individuals has been impeded by the lack of a single, simple laboratory test. Currently, Fragile X syndrome can be excluded in males and a majority of females using a simple high-throughput PCR test. Due to the limited sensitivity of the PCR test, we find in our diagnostic service that approximately 40% of females appear homozygous and a labour intensive and expensive Southern blot test is required to distinguish these from females carrying one normal allele and an expanded allele. Results We describe an improved PCR test which displays a high level of precision allowing alleles differing by a single triplet to be resolved. Using the new assay, we detected 46/83 (53%) cryptic heterozygotes previously labelled as homozygotes. The assay also extended the range of repeats amplifiable, up to 170 CGG repeats in males and 130 CGG repeats in females. Combined with the high precision, the assay also improves discrimination of normal (CGG repeats < 45) from grey zone (45 < CGG repeats < 54) alleles and grey zone alleles from small premutations (55 < CGG repeats < 100). Conclusion Use of this PCR test provides significantly improved precision and amplification of longer alleles. The number of follow-up Southern blot tests required is reduced (up to 50%) with consequent improvement in turnaround time and cost.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3