Modeling and systematic analysis of biomarker validation using selected reaction monitoring

Author:

Atashpaz-Gargari Esmaeil,Braga-Neto Ulisses M,Dougherty Edward R

Abstract

Abstract Background Discovery and validation of protein biomarkers with high specificity is the main challenge of current proteomics studies. Different mass spectrometry models are used as shotgun tools for the discovery of biomarkers. Validation of a set of selected biomarkers from a list of candidates is an important stage in the biomarker identification pipeline. Validation is typically done by triple quadrupole (QQQ) mass spectrometry (MS) running in selected reaction monitoring (SRM) mode. Although the individual modules of this pipeline have been studied, there is little work on integrating the components from a systematic point of view. Results This paper analyzes the SRM experiment pipeline in a systematic fashion, by modeling the main stages of the biomarker validation process. The proposed models for SRM and protein mixture are then used to study the effect of different parameters on the final performance of biomarker validation. Sample complexity, purification, peptide ionization, and peptide specificity are among the parameters of the SRM experiment that are studied. We focus on the sensitivity of the SRM pipeline to the working parameters, in order to identify the bottlenecks where time and energy should be spent in designing the experiment. Conclusions The model presented in this paper can be utilized to observe the effect of different instrument and experimental settings on biomarker validation by SRM. On the other hand, the model would be beneficial for optimization of the work flow as well as identification of the bottlenecks of the pipeline. Also, it creates the required infrastructure for predicting the performance of the SRM pipeline for a specific setting of the parameters.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Science Applications,General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3