Reflection and refraction of acoustic waves at poroelastic ocean bed

Author:

Vashishth A. K.,Sharma M. D.

Abstract

Abstract Ocean bottom is considered as a plane interface between non-viscous liquid and anisotropic dissipative poroelastic solid. The dissipation comes from the viscosity of pore-fluid as well as the anelasticity of the porous frame. Biot’s theory is used to derive a system of modified Christoffel equations for the propagation of plane harmonic waves in a porous medium. The non-trivial solution of this system is ensured by a determinantal equation. This equation is solved into a polynomial equation of degree eight, whose roots represent the vertical slowness values for the waves propagating upward and downward in a porous medium. The eight, numerically obtained, slowness values are identified with the four waves propagating towards (or away from) the boundary in the porous medium. Incidence of acoustic wave through the liquid at the interface results in its reflection and the refraction of four attenuating waves in the poroelastic medium. The energy partition among the reflected and refracted waves is calculated at the interface. Conservation of energy is obtained except in the case of partially opened surface pores of the porous medium. Energy refracted to the dissipative porous medium is expressed through an energy matrix. The four diagonal elements of this matrix represent the energy shares of the four inhomogeneous waves and the sum of all the off-diagonal elements of this matrix represents the interaction energy. Few significant results are extracted from the observations in the numerical examples studied. These results represent the effect of anisotropic symmetries, anelasticity, wave-frequency, opening, configuration and flow-impedance of pores, on the energy shares of reflected and refracted waves.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3