Author:
Fujii Tsutomu,Fuchs Bryan C,Yamada Suguru,Lauwers Gregory Y,Kulu Yakup,Goodwin Jonathan M,Lanuti Michael,Tanabe Kenneth K
Abstract
Abstract
Background
In the setting of chronic liver injury in humans, epidermal growth factor (EGF) and EGF receptor (EGFR) are up-regulated and have been proposed to have vital roles in both liver regeneration and development of hepatocellular carcinoma (HCC). Chronic liver injury also leads to hepatic stellate cell (HSC) differentiation and a novel subpopulation of HSCs which express CD133 and exhibit properties of progenitor cells has been described in rats. The carbon tetrachloride (CCl4)-induced mouse model has been historically relied upon to study liver injury and regeneration. We exposed mice to CCl4 to assess whether EGF and CD133+ HSCs are up-regulated in chronically injured liver.
Methods
CCl4 in olive oil was administered to strain A/J mice three times per week by oral gavage.
Results
Multiple well-differentiated HCCs were found in all livers after 15 weeks of CCl4 treatment. Notably, HCCs developed within the setting of fibrosis and not cirrhosis. CD133 was dramatically up-regulated after CCl4 treatment, and increased expression of desmin and glial fibrillary acidic protein, representative markers of HSCs, was also observed. EGF expression significantly decreased, contrary to observations in humans, whereas the expression of amphiregulin, another EGFR ligand, was significantly increased.
Conclusions
Species-specific differences exist with respect to the histopathological and molecular pathogenesis of chronic liver disease. CCl4-induced chronic liver injury in A/J mice has important differences compared to human cirrhosis leading to HCC.
Publisher
Springer Science and Business Media LLC
Subject
Gastroenterology,General Medicine
Cited by
150 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献