Factors associated with death in confirmed cases of COVID-19 in the state of Rio de Janeiro

Author:

Cini Oliveira MarcellaORCID,de Araujo Eleuterio TatianaORCID,de Andrade Corrêa Allan Bruno,da Silva Lucas Dalsenter RomanoORCID,Rodrigues Renata CoelhoORCID,de Oliveira Bruna AndradeORCID,Martins Marlos MeloORCID,Raymundo Carlos EduardoORCID,de Andrade Medronho RobertoORCID

Abstract

Abstract Background COVID-19 can occur asymptomatically, as influenza-like illness, or as more severe forms, which characterize severe acute respiratory syndrome (SARS). Its mortality rate is higher in individuals over 80 years of age and in people with comorbidities, so these constitute the risk group for severe forms of the disease. We analyzed the factors associated with death in confirmed cases of COVID-19 in the state of Rio de Janeiro. This cross-sectional study evaluated the association between individual demographic, clinical, and epidemiological variables and the outcome (death) using data from the Unified Health System information systems. Methods We used the extreme boosting gradient (XGBoost) model to analyze the data, which uses decision trees weighted by the estimation difficulty. To evaluate the relevance of each independent variable, we used the SHapley Additive exPlanations (SHAP) metric. From the probabilities generated by the XGBoost model, we transformed the data to the logarithm of odds to estimate the odds ratio for each independent variable. Results This study showed that older individuals of black race/skin color with heart disease or diabetes who had dyspnea or fever were more likely to die. Conclusions The early identification of patients who may progress to a more severe form of the disease can help improve the clinical management of patients with COVID-19 and is thus essential to reduce the lethality of the disease.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3