Author:
Giraud-Gatineau Audrey,Texier Gaetan,Fournier Pierre-Edouard,Raoult Didier,Chaudet Hervé
Abstract
Abstract
Background
For the purpose of epidemiological surveillance, the Hospital University Institute Méditerranée infection has implemented since 2013 a system named MIDaS, based on the systematic collection of routine activity materials, including MALDI-TOF spectra, and results. The objective of this paper is to present the pipeline we use for processing MALDI-TOF spectra during epidemiological surveillance in order to disclose proteinic cues that may suggest the existence of epidemic processes in complement of incidence surveillance. It is illustrated by the analysis of an alarm observed for Streptococcus pneumoniae.
Methods
The MALDI-TOF spectra analysis process looks for the existence of clusters of spectra characterized by a double time and proteinic close proximity. This process relies on several specific methods aiming at contrasting and clustering the spectra, presenting graphically the results for an easy epidemiological interpretation, and for determining the discriminating spectra peaks with their possible identification using reference databases.
Results
The use of this pipeline in the case of an alarm issued for Streptococcus pneumoniae has made it possible to reveal a cluster of spectra with close proteinic and temporal distances, characterized by the presence of three discriminant peaks (5228.8, 5917.8, and 8974.3 m/z) and the absence of peak 4996.9 m/z. A further investigation on UniProt KB showed that peak 5228.8 is possibly an OxaA protein and that the absent peak may be a transposase.
Conclusion
This example shows this pipeline may support a quasi-real time identification and characterization of clusters that provide essential information on a potentially epidemic situation. It brings valuable information for epidemiological sensemaking and for deciding on the continuation of the epidemiological investigation, in particular the involving of additional costly resources to confirm or invalidate the alarm.
Clinical trials registration
NCT03626987.
Funder
French Ministry of Health for the Hospital Clinical Research Program
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Langmuir AD. The surveillance of communicable diseases of national importance. N Engl J Med. 1963;268:182–92.
2. Thacker SB, Birkhead GS. Surveillance field epidemiology. 2nd ed. New York: Oxford University Press; 2002. p. 26–9.
3. Abat C, Chaudet H, Rolain JM, Colson P, Raoult D. Traditional and syndromic surveillance of infectious diseases and pathogens. Int J Infect Dis. 2016;48:22–8.
4. Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49(4):543–51.
5. Chaudet H, Pellegrin L, Gaudin C, Texier G, Queyriaux B, Meynard JB, Boutin JP. A model-Based architecture for supporting situational diagnosis in real-time surveillance systems. Adv Dis Surveill. 2007;4:152.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献