Machine learning pipeline for blood culture outcome prediction using Sysmex XN-2000 blood sample results in Western Australia

Author:

McFadden Benjamin R.,Inglis Timothy J. J.,Reynolds Mark

Abstract

Abstract Background Bloodstream infections (BSIs) are a significant burden on the global population and represent a key area of focus in the hospital environment. Blood culture (BC) testing is the standard diagnostic test utilised to confirm the presence of a BSI. However, current BC testing practices result in low positive yields and overuse of the diagnostic test. Diagnostic stewardship research regarding BC testing is increasing, and becoming more important to reduce unnecessary resource expenditure and antimicrobial use, especially as antimicrobial resistance continues to rise. This study aims to establish a machine learning (ML) pipeline for BC outcome prediction using data obtained from routinely analysed blood samples, including complete blood count (CBC), white blood cell differential (DIFF), and cell population data (CPD) produced by Sysmex XN-2000 analysers. Methods ML models were trained using retrospective data produced between 2018 and 2019, from patients at Sir Charles Gairdner hospital, Nedlands, Western Australia, and processed at Pathwest Laboratory Medicine, Nedlands. Trained ML models were evaluated using stratified 10-fold cross validation. Results Two ML models, an XGBoost model using CBC/DIFF/CPD features with boruta feature selection (BFS) , and a random forest model trained using CBC/DIFF features with BFS were selected for further validation after obtaining AUC scores of $$0.76 \pm 0.04$$ 0.76 ± 0.04 and $$0.75 \pm 0.04$$ 0.75 ± 0.04 respectively using stratified 10-fold cross validation. The XGBoost model obtained an AUC score of 0.76 on a internal validation set. The random forest model obtained AUC scores of 0.82 and 0.76 on internal and external validation datasets respectively. Conclusions We have demonstrated the utility of using an ML pipeline combined with CBC/DIFF, and CBC/DIFF/CPD feature spaces for BC outcome prediction. This builds on the growing body of research in the area of BC outcome prediction, and provides opportunity for further research.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3