Author:
Qi Jianjiang,He Di,Yang Dagan,Wang Mengyan,Ma Wenjun,Cui Huaizhong,Ye Fei,Wang Fei,Xu Jinjian,Li Zhijian,Liu Chuntao,Wu Jing,Qi Kexin,Wu Rui,Huang Jinsong,Liu Shourong,Zhu Yimin
Abstract
Abstract
Background
The severity of COVID-19 associates with the clinical decision making and the prognosis of COVID-19 patients, therefore, early identification of patients who are likely to develop severe or critical COVID-19 is critical in clinical practice. The aim of this study was to screen severity-associated markers and construct an assessment model for predicting the severity of COVID-19.
Methods
172 confirmed COVID-19 patients were enrolled from two designated hospitals in Hangzhou, China. Ordinal logistic regression was used to screen severity-associated markers. Least Absolute Shrinkage and Selection Operator (LASSO) regression was performed for further feature selection. Assessment models were constructed using logistic regression, ridge regression, support vector machine and random forest. The area under the receiver operator characteristic curve (AUROC) was used to evaluate the performance of different models. Internal validation was performed by using bootstrap with 500 re-sampling in the training set, and external validation was performed in the validation set for the four models, respectively.
Results
Age, comorbidity, fever, and 18 laboratory markers were associated with the severity of COVID-19 (all P values < 0.05). By LASSO regression, eight markers were included for the assessment model construction. The ridge regression model had the best performance with AUROCs of 0.930 (95% CI, 0.914–0.943) and 0.827 (95% CI, 0.716–0.921) in the internal and external validations, respectively. A risk score, established based on the ridge regression model, had good discrimination in all patients with an AUROC of 0.897 (95% CI 0.845–0.940), and a well-fitted calibration curve. Using the optimal cutoff value of 71, the sensitivity and specificity were 87.1% and 78.1%, respectively. A web-based assessment system was developed based on the risk score.
Conclusions
Eight clinical markers of lactate dehydrogenase, C-reactive protein, albumin, comorbidity, electrolyte disturbance, coagulation function, eosinophil and lymphocyte counts were associated with the severity of COVID-19. An assessment model constructed with these eight markers would help the clinician to evaluate the likelihood of developing severity of COVID-19 at admission and early take measures on clinical treatment.
Funder
The special funding of New Coronary Pneumonia, Institute of China's System Research, Zhejiang University
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.
2. World Health Organization: Novel Coronavirus (2019-nCoV). Situation report-133.2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200701-covid-19-sitrep-163.pdf?sfvrsn=9a56f2ac_4. Accessed 2 Jul 2020
3. Wu ZY, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–42.
4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395(10223):497–506.
5. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献