Author:
Long Hui,Zhao Jing,Zeng Hao-Long,Lu Qing-Bin,Fang Li-Qun,Wang Qiang,Wu Qing-Ming,Liu Wei
Abstract
Abstract
Background
The temporal relationship between SARS-CoV-2 and antibody production and clinical progression remained obscure. The aim of this study was to describe the viral kinetics of symptomatic patients with SARS-CoV-2 infection and identify factors that might contribute to prolonged viral shedding.
Methods
Symptomatic COVID-19 patients were enrolled in two hospitals in Wuhan, China, from whom the respiratory samples were collected and measured for viral loads consecutively by reverse transcriptase quantitative PCR (RT-qPCR) assay. The viral shedding pattern was delineated in relate to the epidemiologic and clinical information.
Results
Totally 2726 respiratory samples collected from 703 patients were quantified. The SARS-CoV-2 viral loads were at the highest level during the initial stage after symptom onset, which subsequently declined with time. The median time to SARS-CoV-2 negativity of nasopharyngeal test was 28 days, significantly longer in patients with older age (> 60 years old), female gender and those having longer interval from symptom onset to hospital admission (> 10 days). The multivariate Cox regression model revealed significant effect from older age (HR 0.73, 95% CI 0.55–0.96), female gender (HR 0.72, 95% CI 0.55–0.96) and longer interval from symptom onset to admission (HR 0.44, 95% CI 0.33–0.59) on longer time to SARS-CoV-2 negativity. The IgM antibody titer was significantly higher in the low viral loads group at 41–60 days after symptom onset. At the population level, the average viral loads were higher in early than in late outbreak periods.
Conclusions
The prolonged viral shedding of SARS-CoV-2 was observed in COVID-19 patients, particularly in older, female and those with longer interval from symptom onset to admission.
Funder
the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. World Health Organization. Coronavirus disease (COVID-19) technical guidance: laboratory testing for 2019-nCoV in humans. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
2. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382:1177–9.
3. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382:929–36.
4. Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5:434–5.
5. Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, et al. Positive RT-PCR test results in patients recovered from COVID-19. JAMA. 2020;323:502–1503.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献