Abstract
Abstract
Background
Indoor residual spraying (IRS) is a major method of malaria vector control across sub-Saharan Africa. Effective control is being undermined by the rapid spread of insecticide resistance. There is major investment in development of new insecticides for IRS that possess novel modes of action, long residual activity, low mammalian toxicity and minimal cross-resistance. VECTRON™ T500, a new IRS product containing the active ingredient broflanilide as a 50% wettable powder (WP), has been shown to be efficacious against pyrethroid susceptible and resistant vector species on mud and concrete substrates in experimental hut (Phase II) trials.
Methods
A two-arm non-inferiority cluster randomized controlled trial (Phase III) will be undertaken in Muheza District, Tanga Region, Tanzania. VECTRON™ T500 will be compared to the IRS product Fludora® Fusion (clothianidin 50% WP + deltamethrin 6.25% WP). The predominant malaria vectors in the study area are pyrethroid-resistant Anopheles gambiae s.s., An. arabiensis and An. funestus s.s. Sixteen village clusters will be pair-matched on baseline vector densities and allocated to reference and intervention arms. Consenting households in the intervention arm will be sprayed with VECTRON™ T500 and those in the reference arm will be sprayed with Fludora® Fusion. Each month, CDC light traps will collect mosquitoes to estimate changes in vector density, indoor biting, sporozoite and entomological inoculation rates (EIR). Susceptibility to IRS active ingredients will be assessed using World Health Organisation (WHO) bottle bioassays. Target site and metabolic resistance mechanisms will be characterised among Anopheles field populations from both trial arms. Residual efficacy of both IRS products will be monitored for 12 months post intervention. Questionnaire and focus group discussions will explore factors that influence adherence, adverse effects and benefits of IRS.
Discussion
This protocol describes a large-scale non-inferiority evaluation of a novel IRS product to reduce the density and EIR of pyrethroid-resistant Anopheles vectors. If VECTRON™ T500 proves non-inferior to Fludora® Fusion, it will be considered as an additional vector control product for malaria prevention and insecticide resistance management.
Trial registration: ClinicalTrials.gov, NCT05150808, registered on 26 November 2021. Retrospectively registered.
Funder
Bill and Melinda Gates Foundation
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. World Health Organization. Global plan for insecticide resistance management in malaria vectors. 2012. https://apps.who.int/iris/handle/10665/44846.
2. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
3. World Health Organization. World Malaria Report 2020: 20 years of global progress and challenges. Geneva, Switzerland: World Health Organisation; 2020. https://apps.who.int/iris/handle/10665/337660.
4. Oxborough RM. Trends in US President’s Malaria Initiative-funded indoor residual spray coverage and insecticide choice in sub-Saharan Africa (2008–2015): Urgent need for affordable, long-lasting insecticides. Malar J. 2016;15:1–9.
5. MacDonald G. The epidemiology and control of malaria. London, UK: Oxford University Press; 1957.