Spatial distribution and machine learning prediction of sexually transmitted infections and associated factors among sexually active men and women in Ethiopia, evidence from EDHS 2016

Author:

Kebede Kassaw Abdul-Aziz,Melese Yilma Tesfahun,Sebastian Yakub,Yeneneh Birhanu Abraham,Sharew Melaku Mequannent,Surur Jemal Sebwedin

Abstract

Abstract Introduction Sexually transmitted infections (STIs) are the major public health problem globally, affecting millions of people every day. The burden is high in the Sub-Saharan region, including Ethiopia. Besides, there is little evidence on the distribution of STIs across Ethiopian regions. Hence, having a better understanding of the infections is of great importance to lessen their burden on society. Therefore, this article aimed to assess predictors of STIs using machine learning techniques and their geographic distribution across Ethiopian regions. Assessing the predictors of STIs and their spatial distribution could help policymakers to understand the problems better and design interventions accordingly. Methods A community-based cross-sectional study was conducted from January 18, 2016, to June 27, 2016, using the 2016 Ethiopian Demography and Health Survey (EDHS) dataset. We applied spatial autocorrelation analysis using Global Moran’s I statistics to detect latent STI clusters. Spatial scan statics was done to identify local significant clusters based on the Bernoulli model using the SaTScan™ for spatial distribution and Supervised machine learning models such as C5.0 Decision tree, Random Forest, Support Vector Machine, Naïve Bayes, and Logistic regression were applied to the 2016 EDHS dataset for STI prediction and their performances were analyzed. Association rules were done using an unsupervised machine learning algorithm. Results The spatial distribution of STI in Ethiopia was clustered across the country with a global Moran’s index = 0.06 and p value = 0.04. The Random Forest algorithm was best for STI prediction with 69.48% balanced accuracy and 68.50% area under the curve. The random forest model showed that region, wealth, age category, educational level, age at first sex, working status, marital status, media access, alcohol drinking, chat chewing, and sex of the respondent were the top 11 predictors of STI in Ethiopia. Conclusion Applying random forest machine learning algorithm for STI prediction in Ethiopia is the proposed model to identify the predictors of STIs.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Reference65 articles.

1. WHO. Sexually transmitted infections (STIs) 2019. https://www.health.ny.gov/diseases/communicable/std/.

2. WHO. Sexually transmitted infections Europe: WHO; 2021. https://www.euro.who.int/en/health-topics/communicable-diseases/sexually-transmitted-infections/sexually-transmitted-infections.

3. Organization WH. Global incidence and prevalence of selected curable sexually transmitted infections-2008: World Health Organization; 2012.

4. Parekh N, Donohue JM, Corbelli J, Men A, Kelley D, Jarlenski M. Screening for sexually transmitted infections after cervical cancer screening guideline and medicaid policy changes: a population-based analysis. Med Care. 2018;56(7):561–8.

5. Mavragani A, Ochoa G. Infoveillance of infectious diseases in USA: STDs, tuberculosis, and hepatitis. J Big Data. 2018;5(1):1–23.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3