Predictive risk score model for severe fever with thrombocytopenia syndrome mortality based on qSOFA and SIRS scoring system

Author:

Wang LiORCID,Zou Zhiqiang,Ding Kun,Hou Chunguo

Abstract

Abstract Background Severe fever with thrombocytopenia syndrome (SFTS) is a severe systemic virus infectious disease usually having multi-organ dysfunction which resembles sepsis. Methods Data of 321 patients with laboratory-confirmed SFTS from May 2013 to July 2017 were retrospectively analyzed. Demographic and clinical characteristics, calculated quick sequential organ failure assessment (qSOFA) score and systemic inflammatory response syndrome (SIRS) criteria for survivors and nonsurvivors were compared. Independent risk factors associated with in-hospital mortality were obtained using multivariable logistic regression analysis. Risk score models containing different risk factors for mortality in stratified patients were established whose predictive values were evaluated using the area under ROC curve (AUC). Results Of 321 patients, 87 died (27.1%). Age (p < 0.001) and percentage numbers of patients with qSOFA≥2 and SIRS≥2 (p < 0.0001) were profoundly greater in nonsurvivors than in survivors. Age, qSOFA score, SIRS score and aspartate aminotransferase (AST) were independent risk factors for mortality for all patients. qSOFA score was the only common risk factor in all patients, those age ≥ 60 years and those enrolled in the intensive care unit (ICU). A risk score model containing all these risk factors (Model1) has high predictive value for in-hospital mortality in these three groups with AUCs (95% CI): 0.919 (0.883–0.946), 0.929 (0.862–0.944) and 0.815 (0.710–0.894), respectively. A model only including age and qSOFA also has high predictive value for mortality in these groups with AUCs (95% CI): 0.872 (0.830–0.906), 0.885(0.801–0.900) and 0.865 (0.767–0.932), respectively. Conclusions Risk models containing qSOFA have high predictive validity for SFTS mortality.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3