Author:
Rando-Segura Ariadna,Aznar María Luisa,Moreno María Milagros,Espasa Soley Mateu,Sulleiro Igual Elena,Bocanegra Garcia Cristina,Gil Olivas Eva,Nindia Eugénio Arlete,Escartin Huesca Carlos,Zacarias Adriano,Vegue Collado Josep,Katimba Domingos,Vivas Cano Maria Carmen,Gabriel Estevao,López García Maria Teresa,Pumarola Suñe Tomas,Molina Romero Israel,Tórtola Fernández María Teresa
Abstract
Abstract
Background
The importance of Mycobacterium tuberculosis strains with disputed rpoB mutations remains to be defined. This study aimed to assess the frequency and types of rpoB mutations in M. tuberculosis isolates from Cubal, Angola, a country with a high incidence of tuberculosis.
Methods
All isolates included (n = 308) were analyzed using phenotypic drug susceptibility testing and GenoType MTBDRplus assay. DNA sequencing of the rpoB gene and determination of rifampicin MIC by macrodilution method were additionally performed on isolates yielding discordant results (n = 12) and those in which the mutation detected was not characterized (n = 8).
Results
In total, 85.1% (74/87) of rifampicin-resistant strains had undisputed rpoB mutations -S450L (49), D435V (15), H445D (3), H445Y (2), Q432ins (1), L449M plus S450F (1), S450F (1), S450W (1) and S450Y (1)-; 10.3% (9/87) had disputed rpoB mutations—L430P plus S493L (1), N437del (1), H445L (3), D435Y (2), L452P (2)-, 2.3% (2.3%) showed no rpoB mutations and 2.3% (2/87) showed heteroresistance—D435Y plus L452P and L430P plus S493L-.
Conclusion
Disputed rpoB mutations were common, occurring in 10.3% of rifampicin resistant isolates. Current phenotyping techniques may be unable to detect this resistance pattern. To increase their sensitivity, a lower concentration of RIF could be used in these tests or alternatively, rpoB mutations could be screened and characterized in all M. tuberculosis strains.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Global tuberculosis report 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.
2. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis—rapid diagnostics for tuberculosis detection, 2021 update. Geneva: World Health Organization; 2021. License: CC BY-NC-SA 3.0 IGO.
3. Smith SE, Kurbatova EV, Cavanaugh JS, Cegielski JP. Global isoniazid resistance patterns in rifampin-resistant and rifampin-susceptible tuberculosis. Int J Tuberc Lung Dis. 2012;16(2):203–5. https://doi.org/10.5588/ijtld.11.0445.
4. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341(8846):647–50. https://doi.org/10.1016/0140-6736(93)90417-f.
5. Van Deun A, Barrera L, Bastian I, Fattorini L, Hoffmann H, Kam KM, Rigouts L, Rüsch-Gerdes S, Wright A. Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results. J Clin Microbiol. 2009;47(11):3501–6. https://doi.org/10.1128/JCM.01209-09.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献