Prevalence of HIV-1 drug resistance amongst newly diagnosed HIV-infected infants age 4–8 weeks, enrolled in three nationally representative PMTCT effectiveness surveys, South Africa: 2010, 2011–12 and 2012–13

Author:

Hunt Gillian M.,Ledwaba Johanna,Salimo Anna,Kalimashe Monalisa,Dinh Thu-Ha,Jackson Debra,Sherman Gayle,Puren Adrian,Ngandu Nobubelo K.,Lombard Carl,Morris Lynn,Goga Ameena

Abstract

Abstract Background South Africa (SA) has expanded efforts to reduce mother-to-child transmission of HIV (MTCT) to less than 2% at six weeks after birth and to less than 5% at 18 months postpartum by 2016. Despite improved antiretroviral regimens and coverage between 2001 and 2016, there is little data on infant HIV drug resistance. This paper tracks the prevalence of HIV drug resistance patterns amongst HIV infected infants from three nationally representative studies that assessed the effectiveness of national programs to prevent MTCT (PMTCT). The first study was conducted in 2010 (under the dual therapy PMTCT policy), the second from 2011 to 12 (PMTCT Option A policy) and the third from 2012 to 13 (PMTCT Option A policy). From 2010 to 2013, infant non-nucleoside reverse transcriptase inhibitor (NNRTI) exposure increased from single dose to daily throughout breastfeeding; maternal nucleoside reverse transcriptase inhibitor (NRTI) and NNRTI exposure increased with initiation of NNRTI-and NRTI- containing triple antiretroviral therapy (ART) earlier in gestation and at higher CD4 cell counts. Methods Three nationally representative surveys were conducted in 2010, 2011–12 and 2012–13. During the surveys, mothers with known, unknown, or no exposure to antiretrovirals for PMTCT and their infants were included, and MTCT was measured. For this paper, infant dried blood spots (iDBS) from HIV PCR positive infants aged 4–8 weeks, with consent for additional iDBS testing, were analysed for HIV drug resistance at the National Institute of Communicable Diseases (NICD), SA, using an in-house assay validated by the Centers for Disease Control and Prevention (CDC). Total viral nucleic acid was extracted from 2 spots and amplified by nested PCR to generate a ~ 1 kb amplicon that was sequenced using Sanger sequencing technologies. Sequence assembly and editing was performed using RECall v3. Results Overall, HIV-1 drug resistance was detected in 51% (95% Confidence interval (CI) [45–58%]) of HIV PCR positive infants, 37% (95% CI [28–47%]) in 2010, 64% (95% CI [53–74%]) in 2011 and 63% (95% CI [47–77%]) in 2012 (p < 0.0001), particularly to the NNRTI drug class. Pooled analyses across all three surveys demonstrated that infants whose mothers received ART showed the highest prevalence of resistance (74%); 26% (21/82) of HIV PCR positive infants with no or undocumented antiretroviral drug (ARV) exposure harboured NNRTI resistance. Conclusions These data demonstrate increasing NNRTI resistance amongst newly-diagnosed infants in a high HIV prevalence setting where maternal ART coverage increased across the years, starting earlier in gestation and at higher CD4 cell counts. This is worrying as lifelong maternal ART coverage for HIV positive pregnant and lactating women is increasing. Also of concern is that resistant virus was detected in HIV positive infants whose mothers were not exposed to ARVs, raising questions about circulating resistant virus. Numbers in this group were too small to assess trends over the three years.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Reference22 articles.

1. UNAIDS: 2014 Progress report on the global plan towards the elimination of new HIV infections among children by 2015 and keeping their mothers alive. 2014. Available from https://www.unaids.org/en/resources/documents/2014/JC2681_2014-Global-Plan-progress . Accessed 2 May 2018.

2. National Department of Health: The South African Antiretroviral Treatment Guidelines. In. Edited by National Department of Health. Pretoria: National Department of Health, 2010. Available from http://apps.who.int/medicinedocs/documents/s19153en/s19153en.pdf . Accessed 2 May 2018.

3. Violari A, Lindsey JC, Hughes MD, Mujuru HA, Barlow-Mosha L, Kamthunzi P, Chi BH, Cotton MF, Moultrie H, Khadse S, et al. Nevirapine versus ritonavir-boosted lopinavir for HIV-infected children. N Engl J Med. 2012;366(25):2380–9.

4. South African National AIDS Council: The National Strategic Plan on HIV, STIs and TB, 2012-2016. 2011. Available from https://www.hst.org.za/publications/NonHST%20Publications/hiv-nsp.pdf . Accessed 2 May 2018.

5. Goga A, Dinh T, Jackson D, for the SAPMTCTE study group: evaluation of the effectiveness of the national prevention of mother-to-child transmission (PMTCT) programme measured at six weeks postpartum in South Africa, 2010. Published 2012. Available from http://www.mrc.ac.za/sites/default/files/files/2016-07-12/SAPMTCTE2010.pdf . Accessed 2 May 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3