Empowering child health: Harnessing machine learning to predict acute respiratory infections in Ethiopian under-fives using demographic and health survey insights

Author:

Kalayou Mulugeta Hayelom,Kassaw Abdul-Aziz Kebede,Shiferaw Kirubel Biruk

Abstract

Abstract Background A dearth of studies showed that infectious diseases cause the majority of deaths among under-five children. Worldwide, Acute Respiratory Infection (ARI) continues to be the second most frequent cause of illness and mortality among children under the age of five. The paramount disease burden in developing nations, including Ethiopia, is still ARI. Objective This study aims to determine the magnitude and predictors of ARI among under-five children in Ethiopia using used state of the art machine learning algorithms. Methods Data for this study were derived from the 2016 Ethiopian Demographic and Health Survey. To predict the determinants of acute respiratory infections, we performed several experiments on ten machine learning algorithms (random forests, decision trees, support vector machines, Naïve Bayes, and K-nearest neighbors, Lasso regression, GBoost, XGboost), including one classic logistic regression model and an ensemble of the best performing models. The prediction ability of each machine-learning model was assessed using receiver operating characteristic curves, precision-recall curves, and classification metrics. Results The total ARI prevalence rate among 9501 under-five children in Ethiopia was 7.2%, according to the findings of the study. The overall performance of the ensemble model of SVM, GBoost, and XGBoost showed an improved performance in classifying ARI cases with an accuracy of 86%, a sensitivity of 84.6%, and an AUC-ROC of 0.87. The highest performing predictive model (the ensemble model) showed that the child’s age, history of diarrhea, wealth index, type of toilet, mother’s educational level, number of living children, mother’s occupation, and type of fuel they used were an important predicting factor for acute respiratory infection among under-five children. Conclusion The intricate web of factors contributing to ARI among under-five children was identified using an advanced machine learning algorithm. The child’s age, history of diarrhea, wealth index, and type of toilet were among the top factors identified using the ensemble model that registered a performance of 86% accuracy. This study stands as a testament to the potential of advanced data-driven methodologies in unraveling the complexities of ARI in low-income settings.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3