Disinfection efficiency test for contaminated surgical mask by using Ozone generator

Author:

Tippayawat Patcharaporn,Vongnarkpetch Chalermchai,Papalee Saitharn,Srijampa Sukanya,Boonmars Thidarut,Meethong Nonglak,Phanthanawiboon Supranee

Abstract

Abstract Background Ozone (O3) is an effective disinfectant agent that leaves no harmful residues. Due to the global health crisis caused by the COVID-19 pandemic, surgical masks are in high demand, with some needing to be reused in certain regions. This study aims to evaluate the effects of O3 for pathogen disinfection on reused surgical masks in various conditions. Methods O3 generators, a modified PZ 2–4 for Air (2000 mg O3/L) and a modified PZ 7 –2HO for Air (500 mg O3/L), were used together with 1.063 m3 (0.68 × 0.68 × 2.3 m) and 0.456 m3 (0.68 × 0.68 × 1.15 m) acrylic boxes as well as a room-sized 56 m3 (4 × 4 × 3.5 m) box to provide 3 conditions for the disinfection of masks contaminated with enveloped RNA virus (105 FFU/mL), bacteria (103 CFU/mL) and fungi (102 spores/mL). Results The virucidal effects were 82.99% and 81.70% after 15 min of treatment with 2000 mg/L O3 at 1.063 m3 and 500 mg/L O3 at 0.456 m3, respectively. The viral killing effect was increased over time and reached more than 95% after 2 h of incubation in both conditions. By using 2000 mg/L O3 in a 1.063 m3 box, the growth of bacteria and fungi was found to be completely inhibited on surgical masks after 30 min and 2 h of treatment, respectively. Using a lower-dose O3 generator at 500 mg O3/L in 0.456 m3 provided lower efficiency, although the difference was not significant. Using O3 at 2000 mg O3/L or 500 mg O3/L in a 56 m3 room is efficient for the disinfection of all pathogens on the surface of reused surgical masks. Conclusions This study provided the conditions for using O3 (500–2000 mg/L) to reduce pathogens and disinfect contaminated surgical masks, which might be applied to reduce the inappropriate usage of reused surgical masks.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancement of Antibacterial Efficiency of Face Masks Using Metal Nanoparticles;Journal of Pharmaceutical Negative Results;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3