Abstract
Abstract
Background
Ross River virus (RRV) is responsible for the most common vector-borne disease of humans reported in Australia. The virus circulates in enzootic cycles between multiple species of mosquitoes, wildlife reservoir hosts and humans. Public health concern about RRV is increasing due to rising incidence rates in Australian urban centres, along with increased circulation in Pacific Island countries. Australia experienced its largest recorded outbreak of 9544 cases in 2015, with the majority reported from south east Queensland (SEQ). This study examined potential links between disease patterns and transmission pathways of RRV.
Methods
The spatial and temporal distribution of notified RRV cases, and associated epidemiological features in SEQ, were analysed for the period 2001–2016. This included fine-scale analysis of disease patterns across the suburbs of the capital city of Brisbane, and those of 8 adjacent Local Government Areas, and host spot analyses to identify locations with significantly high incidence.
Results
The mean annual incidence rate for the region was 41/100,000 with a consistent seasonal peak in cases between February and May. The highest RRV incidence was in adults aged from 30 to 64 years (mean incidence rate: 59/100,000), and females had higher incidence rates than males (mean incidence rates: 44/100,000 and 34/100,000, respectively). Spatial patterns of disease were heterogeneous between years, and there was a wide distribution of disease across both urban and rural areas of SEQ. Overall, the highest incidence rates were reported from predominantly rural suburbs to the north of Brisbane City, with significant hot spots located in peri-urban suburbs where residential, agricultural and conserved natural land use types intersect.
Conclusions
Although RRV is endemic across all of SEQ, transmission is most concentrated in areas where urban and peri-urban environments intersect. The drivers of RRV transmission across rural-urban landscapes should be prioritised for further investigation, including identification of specific vectors and hosts that mediate human spillover.
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. National Notifiable Diseases Surveillance System: Commonwealth of Australia; Australian Government. [[Accessed September 23, 2018]. Available from: http://www9.health.gov.au/cda/source/cda-index.cfm.
2. Lau C, Aubry M, Musso D, Teissier A, Paulous S, Despres P, et al. New evidence for endemic circulation of Ross River virus in the Pacific Islands and the potential for emergence. Int J infect Dis: IJID : official publication of the International Society for Infectious Diseases. 2017;57:73–6. https://doi.org/10.1016/j.ijid.2017.01.041 PubMed PMID: 28188934.
3. Harley D, Sleigh A, Ritchie S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin Microbiol Rev. 2001;14(4):909–32. https://doi.org/10.1128/CMR.14.4.909-932.2001 PubMed PMID: 11585790; PubMed Central PMCID: PMCPMC89008.
4. Ratnayake JTB. PhD Thesis: The Valuation of Social and Economic Costs of Mosquito-Transmitted Ross River Virus: Griffith University; 2006.
5. Woodruff R, Bambrick H. Climate change impacts on the burden of Ross River virus disease. Commonwealth of Australia, Garnaut Climate Change Review: National Library of Australia; June 2008.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献