Seasonality of cholera in Kolkata and the influence of climate

Author:

Shackleton Debbie,Economou Theo,Memon Fayyaz Ali,Chen Albert,Dutta Shanta,Kanungo Suman,Deb Alok

Abstract

Abstract Background Cholera in Kolkata remains endemic and the Indian city is burdened with a high number of annual cases. Climate change is widely considered to exacerbate cholera, however the precise relationship between climate and cholera is highly heterogeneous in space and considerable variation can be observed even within the Indian subcontinent. To date, relatively few studies have been conducted regarding the influence of climate on cholera in Kolkata. Methods We considered 21 years of confirmed cholera cases from the Infectious Disease Hospital in Kolkata during the period of 1999–2019. We used Generalised Additive Modelling (GAM) to extract the non-linear relationship between cholera and different climatic factors; temperature, rainfall and sea surface temperature (SST). Peak associated lag times were identified using cross-correlation lag analysis. Results Our findings revealed a bi-annual pattern of cholera cases with two peaks coinciding with the increase in temperature in summer and the onset of monsoon rains. Variables selected as explanatory variables in the GAM model were temperature and rainfall. Temperature was the only significant factor associated with summer cholera (mean temperature of 30.3 °C associated with RR of 3.8) while rainfall was found to be the main driver of monsoon cholera (550 mm total monthly rainfall associated with RR of 3.38). Lag time analysis revealed that the association between temperature and cholera cases in the summer had a longer peak lag time compared to that between rainfall and cholera during the monsoon. We propose several mechanisms by which these relationships are mediated. Conclusions Kolkata exhibits a dual-peak phenomenon with independent mediating factors. We suggest that the summer peak is due to increased bacterial concentration in urban water bodies, while the monsoon peak is driven by contaminated flood waters. Our results underscore the potential utility of preventative strategies tailored to these seasonal and climatic patterns, including efforts to reduce direct contact with urban water bodies in summer and to protect residents from flood waters during monsoon.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3