Abstract
Abstract
Background
The exponential spread of coronavirus disease 2019 (COVID-19) causes unexpected economic burdens to worldwide health systems with severe shortages in hospital resources (beds, staff, equipment). Managing patients’ length of stay (LOS) to optimize clinical care and utilization of hospital resources is very challenging. Projecting the future demand requires reliable prediction of patients’ LOS, which can be beneficial for taking appropriate actions. Therefore, the purpose of this research is to develop and validate models using a multilayer perceptron-artificial neural network (MLP-ANN) algorithm based on the best training algorithm for predicting COVID-19 patients' hospital LOS.
Methods
Using a single-center registry, the records of 1225 laboratory-confirmed COVID-19 hospitalized cases from February 9, 2020 to December 20, 2020 were analyzed. In this study, first, the correlation coefficient technique was developed to determine the most significant variables as the input of the ANN models. Only variables with a correlation coefficient at a P-value < 0.2 were used in model construction. Then, the prediction models were developed based on 12 training algorithms according to full and selected feature datasets (90% of the training, with 10% used for model validation). Afterward, the root mean square error (RMSE) was used to assess the models’ performance in order to select the best ANN training algorithm. Finally, a total of 343 patients were used for the external validation of the models.
Results
After implementing feature selection, a total of 20 variables were determined as the contributing factors to COVID-19 patients’ LOS in order to build the models. The conducted experiments indicated that the best performance belongs to a neural network with 20 and 10 neurons in the hidden layer of the Bayesian regularization (BR) training algorithm for whole and selected features with an RMSE of 1.6213 and 2.2332, respectively.
Conclusions
MLP-ANN-based models can reliably predict LOS in hospitalized patients with COVID-19 using readily available data at the time of admission. In this regard, the models developed in our study can help health systems to optimally allocate limited hospital resources and make informed evidence-based decisions.
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. Liu Y, Wang Z, Ren J, Tian Y, Zhou M, Zhou T, Ye K, Zhao Y, Qiu Y, Li J. A COVID-19 risk assessment decision support system for general practitioners: design and development study. J Med Internet Res. 2020;22(6): e19786.
2. Alom MZ, Rahman M, Nasrin MS, Taha TM, Asari VK: COVID_MTNet: COVID-19 detection with multi-task deep learning approaches. arXiv preprint arXiv:200403747 2020.
3. Bansal A, Padappayil RP, Garg C, Singal A, Gupta M, Klein A. Utility of artificial intelligence amidst the COVID 19 pandemic: a review. J Med Syst. 2020. https://doi.org/10.1007/s10916-020-01617-3.
4. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3): 105924.
5. Hussain A, Bhowmik B, et al. COVID-19 and diabetes: knowledge in progress. Diabetes Res Clin Pract. 2020. https://doi.org/10.1016/j.diabres.2020.108142.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献