Author:
Ombelet Sien,Kpossou Gutemberg,Kotchare Carine,Agbobli Esenam,Sogbo Frédéric,Massou Faridath,Lagrou Katrien,Barbé Barbara,Affolabi Dissou,Jacobs Jan
Abstract
Abstract
Background
Although global surveillance of antimicrobial resistance (AMR) is considered key in the containment of AMR, data from low- and middle-income countries, especially from sub-Saharan Africa, are scarce. This study describes epidemiology of bloodstream infections and antimicrobial resistance rates in a secondary care hospital in Benin.
Methods
Blood cultures were sampled, according to predefined indications, in BacT/ALERT FA Plus and PF Plus (bioMérieux, Marcy-l’Etoile, France) blood culture bottles (BCB) in a district hospital (Boko hospital) and to a lesser extent in the University hospital of Parakou. These BCB were incubated for 7 days in a standard incubator and twice daily inspected for visual signs of growth. Isolates retrieved from the BCB were processed locally and later shipped to Belgium for reference identification [matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF)] and antibiotic susceptibility testing (disk diffusion and E-tests).
Results
From October 2017 to February 2020, 3353 BCB were sampled, corresponding to 3140 blood cultures (212 cultures consisting of > 1 BCB) and 3082 suspected bloodstream infection (BSI) episodes. Most of these cultures (n = 2471; 78.7%) were sampled in children < 15 years of age. Pathogens were recovered from 383 (12.4%) cultures, corresponding to 381 confirmed BSI. 340 of these pathogens were available and confirmed by reference identification. The most common pathogens were Klebsiella pneumoniae (n = 53; 15.6%), Salmonella Typhi (n = 52; 15.3%) and Staphylococcus aureus (n = 46; 13.5%). AMR rates were high among Enterobacterales, with resistance to third-generation cephalosporins in 77.6% of K. pneumoniae isolates (n = 58), 12.8% of Escherichia coli isolates (n = 49) and 70.5% of Enterobacter cloacae isolates (n = 44). Carbapenemase production was detected in 2 Escherichia coli and 2 Enterobacter cloacae isolates, all of which were of the New Delhi metallo-beta lactamase type. Methicillin resistance was present in 22.4% of S. aureus isolates (n = 49).
Conclusion
Blood cultures were successfully implemented in a district hospital in Benin, especially among the pediatric patient population. Unexpectedly high rates of AMR among Gram-negative bacteria against commonly used antibiotics were found, demonstrating the clinical and scientific importance of clinical bacteriology laboratories at this level of care.
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. WHO. Global antimicrobial resistance surveillance system (GLASS) report. Geneva: WHO; 2017.
2. Jacobs J, Hardy L, Semret M, Lunguya O, Phe T, Affolabi D, et al. Diagnostic bacteriology in district hospitals in sub-Saharan Africa: at the forefront of the containment of antimicrobial resistance. Front Med. 2019. https://doi.org/10.3389/fmed.2019.00205.
3. Yansouni CP, Seifu D, Libman M, Alemayehu T, Gizaw S, Johansen ØH, et al. A feasible laboratory-strengthening intervention yielding a sustainable clinical bacteriology sector to support antimicrobial Stewardship in a large referral hospital in Ethiopia. Front Public Health. 2020;8(June):1–10.
4. Ombelet S, Barbé B, Affolabi D, Ronat J-B, Lompo P, Lunguya O, et al. Best practices of blood cultures in low- and middle-income countries. Front Med. 2019. https://doi.org/10.3389/fmed.2019.00131.
5. Bebell L, Muiru A. Antibiotic use and emerging resistance—how can resource-limited countries turn the tide? Glob Heart. 2014;9(3):347–58.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献