Early prediction of blood stream infection in a prospectively collected cohort

Author:

Nestor David,Andersson Hanna,Kihlberg Pernilla,Olson Sara,Ziegler Ingrid,Rasmussen Gunlög,Källman Jan,Cajander Sara,Mölling Paula,Sundqvist Martin

Abstract

Abstract Background Blood stream infection (BSI) and sepsis are serious clinical conditions and identification of the disease-causing pathogen is important for patient management. The RISE (Rapid Identification of SEpsis) study was carried out to collect a cohort allowing high-quality studies on different aspects of BSI and sepsis. The aim of this study was to identify patients at high risk for BSI who might benefit most from new, faster, etiological testing using neutrophil to lymphocyte count ratio (NLCR) and Shapiro score. Methods Adult patients (≥ 18 years) presenting at the emergency department (ED) with suspected BSI were prospectively included between 2014 and 2016 at Örebro University Hospital. Besides extra blood sampling, all study patients were treated according to ED routines. Electronic patient charts were retrospectively reviewed. A modified Shapiro score (MSS) and NLCR were extracted and compiled. Continuous score variables were analysed with area under receiver operator characteristics curves (AUC) to evaluate the ability of BSI prediction. Results The final cohort consisted of 484 patients where 84 (17%) had positive blood culture judged clinically significant. At optimal cut-offs, MSS (≥3 points) and NLCR (> 12) showed equal ability to predict BSI in the whole cohort (AUC 0.71/0.74; sensitivity 69%/67%; specificity 64%/68% respectively) and in a subgroup of 155 patients fulfilling Sepsis-3 criteria (AUC 0.71/0.66; sensitivity 81%/65%; specificity 46%/57% respectively). In BSI cases only predicted by NLCR> 12 the abundance of Gram-negative to Gram-positive pathogens (n = 13 to n = 4) differed significantly from those only predicted by MSS ≥3 p (n = 7 to n = 12 respectively) (p < 0.05). Conclusions MSS and NLCR predicted BSI in the RISE cohort with similar cut-offs as shown in previous studies. Combining the MSS and NLCR did not increase the predictive performance. Differences in BSI prediction between MSS and NLCR regarding etiology need further evaluation.

Funder

Örebro University

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3