Abstract
Abstract
Background
There is poor viral load monitoring (VLM) and inadequate management of virological failure in HIV-positive individuals on antiretroviral therapy in rural KwaZulu-Natal, South Africa. This could be contributing to increasing HIV drug resistance in the setting. This study aims to investigate the clinical and process impediments in VLM within the health system and to evaluate a quality improvement package (QIP) to address the identified gaps. The QIP comprises (i) a designated viral load champion responsible for administrative management and triaging of viral load results (ii) technological enhancement of the routine clinic-based Three Interlinked Electronic Register (TIER.Net) to facilitate daily automatic import of viral load results from the National Health Service Laboratory to TIER.Net (iii) development of a dashboard system to support VLM.
Methods/design
The study will evaluate the effectiveness of the QIP compared to current care for improving VLM and virological suppression using an effectiveness implementation hybrid type 3 design. This will use a cluster-randomised design with the primary healthcare clinics as the unit of randomisation with ten clinics randomised in a 1:1 ratio to either the intervention or control arm. We will enrol 150 HIV-positive individuals who had been on ART for ≥ 12 months from each of the ten clinics (750 in 5 intervention clinics vs. 750 in 5 control clinics) and follow them up for a period of 12 months. The primary outcome is the proportion of all patients who have a viral load (VL) measurement and are virally suppressed (composite outcome) after 12 months of follow up. Secondary outcomes during follow up include proportion of all patients with at least one documented VL in TIER.Net, proportion with VL ≥ 50 copies/mL, proportion with VL ≥ 1000 copies/mL (virological failure) and subsequent switch to second-line ART.
Discussion
We aim to provide evidence that a staff-centred quality improvement package, designated viral load monitoring champion, and augmentation of TIER.Net with a dashboard system will improve viral load monitoring and lead to improved virological suppression.
Trial registration: This trial is registered on ClinicalTrials.gov on 8 Oct 2021. Identifier: NCT05071573; https://clinicaltrials.gov/ct2/show/NCT05071573?term=NCT05071573&draw=2&rank=1
Funder
Royal Academy of Engineering
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. UNAIDS. UNAIDS Data 2019. https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf. Accessed 18 May 2020.
2. Bennett DE, Myatt M, Bertagnolio S, Sutherland D, Gilks CF. Recommendations for surveillance of transmitted HIV drug resistance in countries scaling up antiretroviral treatment. Antivir Ther. 2008;13(Suppl 2):25–36.
3. Vardavas R, Blower S. The emergence of HIV transmitted resistance in Botswana: “when will the WHO detection threshold be exceeded?” PLoS ONE. 2007;2(1):e152.
4. Blower S, Bodine E, Kahn J, McFarland W. The antiretroviral rollout and drug-resistant HIV in Africa: insights from empirical data and theoretical models. AIDS. 2005;19(1):1–14.
5. Rutherford GW, Anglemyer A, Easterbrook PJ, Horvath T, Vitoria M, Penazzato M, et al. Predicting treatment failure in adults and children on antiretroviral therapy: a systematic review of the performance characteristics of the 2010 WHO immunologic and clinical criteria for virologic failure. AIDS. 2014;28(Suppl 2):S161–9.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献