Author:
Zhai Mengmeng,Li Wenhan,Tie Ping,Wang Xuchun,Xie Tao,Ren Hao,Zhang Zhuang,Song Weimei,Quan Dichen,Li Meichen,Chen Limin,Qiu Lixia
Abstract
Abstract
Background
Brucellosis is a major public health problem that seriously affects developing countries and could cause significant economic losses to the livestock industry and great harm to human health. Reasonable prediction of the incidence is of great significance in controlling brucellosis and taking preventive measures.
Methods
Our human brucellosis incidence data were extracted from Shanxi Provincial Center for Disease Control and Prevention. We used seasonal-trend decomposition using Loess (STL) and monthplot to analyse the seasonal characteristics of human brucellosis in Shanxi Province from 2007 to 2017. The autoregressive integrated moving average (ARIMA) model, a combined model of ARIMA and the back propagation neural network (ARIMA-BPNN), and a combined model of ARIMA and the Elman recurrent neural network (ARIMA-ERNN) were established separately to make predictions and identify the best model. Additionally, the mean squared error (MAE), mean absolute error (MSE) and mean absolute percentage error (MAPE) were used to evaluate the performance of the model.
Results
We observed that the time series of human brucellosis in Shanxi Province increased from 2007 to 2014 but decreased from 2015 to 2017. It had obvious seasonal characteristics, with the peak lasting from March to July every year. The best fitting and prediction effect was the ARIMA-ERNN model. Compared with those of the ARIMA model, the MAE, MSE and MAPE of the ARIMA-ERNN model decreased by 18.65, 31.48 and 64.35%, respectively, in fitting performance; in terms of prediction performance, the MAE, MSE and MAPE decreased by 60.19, 75.30 and 64.35%, respectively. Second, compared with those of ARIMA-BPNN, the MAE, MSE and MAPE of ARIMA-ERNN decreased by 9.60, 15.73 and 11.58%, respectively, in fitting performance; in terms of prediction performance, the MAE, MSE and MAPE decreased by 31.63, 45.79 and 29.59%, respectively.
Conclusions
The time series of human brucellosis in Shanxi Province from 2007 to 2017 showed obvious seasonal characteristics. The fitting and prediction performances of the ARIMA-ERNN model were better than those of the ARIMA-BPNN and ARIMA models. This will provide some theoretical support for the prediction of infectious diseases and will be beneficial to public health decision making.
Funder
Shanxi Provincial Key Research and Development Project
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Zheng RJ, Xie SS, Lu XB, Sun LH, Zhou Y, Zhang YX, et al. A systematic review and meta-analysis of epidemiology and clinical manifestations of human Brucellosis in china. Biomed Res Int. 2018;2018:e5712920.
2. Jia P, Joyner A. Human brucellosis occurrences in Inner Mongolia, China: a spatio-temporal distribution and ecological niche modeling approach. BMC Infect Dis. 2015;15:36.
3. Buttigieg SC, Savic S, Cauchi D, Lautier E, Canali M, Aragrande M. Brucellosis control in Malta and Serbia: a one health evaluation. Front Vet Sci. 2018;5:147. https://doi.org/10.3389/fvets.2018.00147.
4. Kaan JA, Frakking FNJ, Arents NLA, Anten S, Roest HIJ, Rothbarth PH. Clinical manifestations and hazards of brucellosis in the Netherlands. Ned Tijdschr Geneeskd. 2012;156(12):A4460.
5. Ahmed W, Zheng K, Liu ZF. Establishment of chronic infection: Brucella's stealth strategy. Front Cell Infect Microbiol. 2016;6:30.