Genotypic and phenotypic characterization of Mycobacterium tuberculosis resistance against fluoroquinolones in the northeast of Iran

Author:

Sayadi Mahdieh,Zare Hosna,Jamedar Saeed Amel,Hashemy Seyed Isaac,Meshkat Zahra,Soleimanpour Saman,Hoffner Sven,Ghazvini KiarashORCID

Abstract

Abstract Background Fluoroquinolones are broad-spectrum antibiotics that are recommended, and increasingly important, for the treatment of multidrug-resistant tuberculosis (MDR-TB). Resistance to fluoroquinolones is caused by mutations in the Quinolone Resistance Determining Region (QRDR) of gyrA and gyrB genes of Mycobacterium tuberculosis. In this study, we characterized the phenotypic and genotypic resistance to fluoroquinolones for the first time in northeast Iran. Methods A total of 123 Mycobacterium tuberculosis isolates, including 111 clinical and 12 collected multidrug-resistant isolates were studied. Also, 19 WHO quality control strains were included in the study. The phenotypic susceptibility was determined by the proportion method on Löwenstein-Jensen medium. The molecular cause of resistance to the fluoroquinolone drugs ofloxacin and levofloxacin was investigated by sequencing of the QRDR region of the gyrA and gyrB genes. Results Among 123 isolates, six (4.8%) were fluoroquinolone-resistant according to phenotypic methods, and genotypically three of them had a mutation at codon 94 of the gyrA gene (Asp→ Gly) which was earlier reported to cause resistance. All three remaining phenotypically resistant isolates had a nucleotide change in codon 95. No mutations were found in the gyrB gene. Five of the 19 WHO quality control strains, were phenotypically fluoroquinolone-resistant, four of them were genotypically resistant with mutations at codon 90, 91 of the gyrA gene and one resistant strain had no detected mutation. Conclusions Mutation at codon 94 of the gyrA gene, was the main cause of fluoroquinolone resistance among M. tuberculosis isolates in our region. In 3/6 fluoroquinolone-resistant isolates, no mutations were found in either gyrA or gyrB. Therefore, it can be concluded that various other factors may lead to fluoroquinolone resistance, such as active efflux pumps, decreased cell wall permeability, and drug inactivation.

Funder

Mashhad University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Reference43 articles.

1. WHO. Global tuberculosis report. Geneva: World Health Organization; 2016. Report No.: 924156539X.

2. Neshani A, Kakhki RK, Sankian M, Zare H, Chichaklu AH, Sayyadi M, et al. Modified genome comparison method: a new approach for identification of specific targets in molecular diagnostic tests using Mycobacterium tuberculosis complex as an example. BMC Infect Dis. 2018;18(1):517.

3. Kakhki RK, Neshani A, Sankian M, Ghazvini K, Hooshyar A, Sayadi M. The short-chain dehydrogenases/reductases (SDR) gene: a new specific target for rapid detection of Mycobacterium tuberculosis complex by modified comparative genomic analysis. Infect Genet Evol. 2019;70:158–64.

4. Kaniga K, Cirillo DM, Hoffner S, Ismail NA, Kaur D, Lounis N, et al. A multi-laboratory, multi-country study to determine bedaquiline minimal inhibitory concentration quality control ranges for phenotypic drug-susceptibility testing. J Clin Microbiol. 2016;JCM:01123–16.

5. Mehrabadi SM, Taraghian M, Pirouzi A, Khaledi A, Neshani A, Rashki S. Pulmonary Nocardiosis in suspected tuberculosis patients: a systematic review and meta-analysis of cross-sectional studies. Ethiop J Health Sci. 2020;30(2):293–300.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3