Study of MIC of silver and zinc oxide nanoparticles, strong and cost-effective antibacterial against biofilm-producing Acinetobacter baumannii in Shiraz, Southwest of Iran

Author:

Kakian Farshad,Arasteh Nawal,Mirzaei Esmaeil,Motamedifar Mohammad

Abstract

Abstract Background Acinetobacter baumannii resistant strains lead to increased mortality, treatment costs, and an increase in the length of hospitalization. Nowadays, nanoparticles are considered a substitute for antibiotics. This study aimed to determine the MIC of Silver (Ag) and Zinc Oxide (ZnO) Nanoparticles (NPs) on Biofilm-Producing Acinetobacter baumannii and determine the relationship between MIC and frequency of efflux pump genes in cutaneous specimens in Shiraz, Southwest Iran in 2021–2022. Methods In this study, specimens were collected from April 2021 to June 2022 at Namazi and Faqihi Hospitals in Shiraz. Investigation of biofilm production in multidrug resistance (MDR) isolates was done by the microtiter plate method. Synthesized nanoparticles were characterized by UV–vis spectrum, X-ray diffraction (XRD), and electron microscopy. The MIC of AgNPs and ZnONPs for isolates was done using the method described in the CLSI guideline (2018). The antibacterial effect of MIC of NPs on inanimate objects was done by colony counts. The prevalence of efflux pump genes (adeR, adeC, adeA, abeM, adeK, adeI) was also investigated by PCR technique. Results The highest ceftriaxone resistance (68%) and lowest colistin resistance (7%) were identified. 57% of isolates were MDR. In addition, 71.9% could produce biofilm and 28.1% of isolates could not produce biofilm. The average size of AgNPs and ZnONPs in the present study is 48 and < 70 nm, respectively. The nanoparticles were spherical. The MIC and the MBC of the ZnONPs were in the range of 125 to 250 µg/mL respectively. Also, for AgNPs, the MIC and the MBC were in the range of 62.5 to 250 µg/ml, respectively. AbeM gene had the highest frequency and the AdeK gene had the lowest frequency. Statistical analysis showed that there is a relationship between the frequency of adeA, adeC, and adeM genes with the MIC of AgNPs and ZnONPs. Conclusion According to the results of the present study, inanimate objects such as scalpels in contact with AgNPs (6000 µg/ml for 240 min) or ZnONPs (5000 µg/ml for 120 min) can be free of biofilm producing Acinetobacter baumannii  with efflux pump genes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3