Bone marrow-derived mesenchymal stem cells attenuate pulmonary inflammation and lung damage caused by highly pathogenic avian influenza A/H5N1 virus in BALB/c mice

Author:

Yudhawati Resti,Amin Muhammad,Rantam Fedik A.,Prasetya Rima R.,Dewantari Jezzy R.,Nastri Aldise M.,Poetranto Emmanuel D.,Wulandari Laksmi,Lusida Maria I.,Koesnowidagdo Soetjipto,Soegiarto Gatot,Shimizu Yohko K.,Mori Yasuko,Shimizu KazufumiORCID

Abstract

Abstract Background The highly pathogenic avian influenza A/H5N1 virus is one of the causative agents of acute lung injury (ALI) with high mortality rate. Studies on therapeutic administration of bone marrow-derived mesenchymal stem cells (MSCs) in ALI caused by the viral infection have been limited in number and have shown conflicting results. The aim of the present investigation is to evaluate the therapeutic potential of MSC administration in A/H5N1-caused ALI, using a mouse model. Methods MSCs were prepared from the bone marrow of 9 to 12 week-old BALB/c mice. An H5N1 virus of A/turkey/East Java/Av154/2013 was intranasally inoculated into BALB/c mice. On days 2, 4, and 6 after virus inoculation, MSCs were intravenously administered into the mice. To evaluate effects of the treatment, we examined for lung alveolar protein as an indicator for lung injury, PaO2/FiO2 ratio for lung functioning, and lung histopathology. Expressions of NF-κB, RAGE (transmembrane receptor for damage associated molecular patterns), TNFα, IL-1β, Sftpc (alveolar cell type II marker), and Aqp5+ (alveolar cell type I marker) were examined by immunohistochemistry. In addition, body weight, virus growth in lung and brain, and duration of survival were measured. Results The administration of MSCs lowered the level of lung damage in the virus-infected mice, as shown by measuring lung alveolar protein, PaO2/FiO2 ratio, and histopathological score. In the MSC-treated group, the expressions of NF-κB, RAGE, TNFα, and IL-1β were significantly suppressed in comparison with a mock-treated group, while those of Sftpc and Aqp5+ were enhanced. Body weight, virus growth, and survival period were not significantly different between the groups. Conclusion The administration of MSCs prevented further lung injury and inflammation, and enhanced alveolar cell type II and I regeneration, while it did not significantly affect viral proliferation and mouse morbidity and mortality. The results suggested that MSC administration was a promissing strategy for treatment of acute lung injuries caused by the highly pathogenic avian influenza A/H5N1 virus, although further optimization and combination use of anti-viral drugs will be obviously required to achieve the goal of reducing mortality.

Funder

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3