Author:
Zhang Renquan,Wang Yu,Lv Zheng,Pei Sen
Abstract
Abstract
Background
During the early stage of the COVID-19 pandemic, many countries implemented non-pharmaceutical interventions (NPIs) to control the transmission of SARS-CoV-2, the causative pathogen of COVID-19. Among those NPIs, stay-at-home and quarantine measures were widely adopted and enforced. Understanding the effectiveness of stay-at-home and quarantine measures can inform decision-making and control planning during the ongoing COVID-19 pandemic and for future disease outbreaks.
Methods
In this study, we use mathematical models to evaluate the impact of stay-at-home and quarantine measures on COVID-19 spread in four cities that experienced large-scale outbreaks in the spring of 2020: Wuhan, New York, Milan, and London. We develop a susceptible-exposed-infected-removed (SEIR)-type model with components of self-isolation and quarantine and couple this disease transmission model with a data assimilation method. By calibrating the model to case data, we estimate key epidemiological parameters before lockdown in each city. We further examine the impact of stay-at-home and quarantine rates on COVID-19 spread after lockdown using counterfactual model simulations.
Results
Results indicate that self-isolation of susceptible population is necessary to contain the outbreak. At a given rate, self-isolation of susceptible population induced by stay-at-home orders is more effective than quarantine of SARS-CoV-2 contacts in reducing effective reproductive numbers $$R_e$$
R
e
. Variation in self-isolation and quarantine rates can also considerably affect the duration of outbreaks, attack rates and peak timing. We generate counterfactual simulations to estimate effectiveness of stay-at-home and quarantine measures. Without these two measures, the cumulative confirmed cases could be much higher than reported numbers within 40 days after lockdown in Wuhan, New York, Milan, and London.
Conclusions
Our findings underscore the essential role of stay-at-home orders and quarantine of SARS-CoV-2 contacts during the early phase of the pandemic.
Funder
National Natural Science Foundation of China
High-level Talents Program of Dalian City
National Key Research and Development Program of China
Provincial College Student Innovation and Entrepreneurship Training Program Support Project
Fundamental Research Funds for the Central Universities
Centers for Disease Control and Prevention
Council of State and Territorial Epidemiologists
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献