Abstract
Abstract
Background
In Thailand, dengue fever is one of the most well-known public health problems. The objective of this study was to examine the epidemiology of dengue and determine the seasonal pattern of dengue and its associate to climate factors in Bangkok, Thailand, from 2003 to 2017.
Methods
The dengue cases in Bangkok were collected monthly during the study period. The time-series data were extracted into the trend, seasonal, and random components using the seasonal decomposition procedure based on loess. The Spearman correlation analysis and artificial neuron network (ANN) were used to determine the association between climate variables (humidity, temperature, and rainfall) and dengue cases in Bangkok.
Results
The seasonal-decomposition procedure showed that the seasonal component was weaker than the trend component for dengue cases during the study period. The Spearman correlation analysis showed that rainfall and humidity played a role in dengue transmission with correlation efficiency equal to 0.396 and 0.388, respectively. ANN showed that precipitation was the most crucial factor. The time series multivariate Poisson regression model revealed that increasing 1% of rainfall corresponded to an increase of 3.3% in the dengue cases in Bangkok. There were three models employed to forecast the dengue case, multivariate Poisson regression, ANN, and ARIMA. Each model displayed different accuracy, and multivariate Poisson regression was the most accurate approach in this study.
Conclusion
This work demonstrates the significance of weather in dengue transmission in Bangkok and compares the accuracy of the different mathematical approaches to predict the dengue case. A single model may insufficient to forecast precisely a dengue outbreak, and climate factor may not only indicator of dengue transmissibility.
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. World Health Organization: Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever. 2011. http://apps.searo.who.int/pds_docs/B4751.pdf. Accessed 7 Dec 2019.
2. Mayo Clinic: Dengue Fever. 2018. https://www.mayoclinic.org/diseases-conditions/dengue-fever/symptoms-causes/syc-20353078. Accessed 7 Dec 2019.
3. Back A, Lundkvist A. Dengue viruses - an overview. Infect Ecol Epidemiol. 2013;3. https://doi.org/10.3402/iee.v3i0.19839.
4. Centers for Disease Control and Prevention: Dengue Vaccine. 2019. https://www.cdc.gov/dengue/prevention/dengue-vaccine.html. Accessed 7 Dec 2019.
5. Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health of Thailand: Dengue Fever Report. 2018. http://www.boe.moph.go.th/boedb/surdata/disease.php?ds=262766. Accessed 7 Dec 2019.
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献