Concordance in pathogen identification at the upper and lower respiratory tract of children with severe pneumonia

Author:

Wang Heping,Li Xiaonan,Zheng Yuejie,Verhagen Lilly M.,Gu Jiali,Li Li,Xu Zhi,Wang Wenjian,de Jonge Marien I.

Abstract

Abstract Background Nasopharyngeal swabs are taken to determine the causative agent of community acquired pneumonia (CAP), while the reliability of upper respiratory tract sampling as a proxy for lower respiratory tract infections is still unclear. Methods Nasopharyngeal (NP) swabs, bronchoalveolar lavage (BAL) fluid samples and clinical data were collected from 153 hospitalized children between 3 months and 14 years of age with severe CAP, enrolled from March to June 2019. Written informed consent for the storage and use of the samples for further studies was obtained from the parents or caregivers. Putative pathogens were detected using a sensitive, high-throughput GeXP-based multiplex PCR and qPCR. Results The same bacterial species in paired samples were found in 29 (23.4%) and the same viral species in 52 (27.5%) of the patients. moderate concordance was found for Mycoplasma pneumoniae (ĸ=0.64), followed by Haemophilus influenzae (ĸ=0.42). The strongest discordance was observed for human adenovirus and also for Pseudomonas aeruginosa, the latter was exclusively detected in BAL samples. In the adenovirus cases strong concordance was associated with high viral loads in the NP swabs. Conclusion The variation in concordance in pathogen detection in the upper and lower respiratory tract of children with severe pneumonia is generally high but varies depending on the species. Novel and impactful insights are the concordance between NP and BAL detection for M. pneumoniae and H. influenzae and the strong correlation between high adenoviral loads in NP swabs and detection in BAL fluid.

Funder

Guangdong High-level Hospital Construction Fund

Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties

Shenzhen Key Medical Discipline Construction Fund

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3