Rapid multiplex MinION nanopore sequencing workflow for Influenza A viruses

Author:

King Jacqueline,Harder Timm,Beer Martin,Pohlmann AnneORCID

Abstract

Abstract Background Due to the frequent reassortment and zoonotic potential of influenza A viruses, rapid gain of sequence information is crucial. Alongside established next-generation sequencing protocols, the MinION sequencing device (Oxford Nanopore Technologies) has become a serious competitor for routine whole-genome sequencing. Here, we established a novel, rapid and high-throughput MinION multiplexing workflow based on a universal RT-PCR. Methods Twelve representative influenza A virus samples of multiple subtypes were universally amplified in a one-step RT-PCR and subsequently sequenced on the MinION instrument in conjunction with a barcoding library preparation kit from the rapid family and the MinIT performing live base-calling. The identical PCR products were sequenced on an IonTorrent platform and, after final consensus assembly, all data was compared for validation. To prove the practicability of the MinION-MinIT method in human and veterinary diagnostics, we sequenced recent and historical influenza strains for further benchmarking. Results The MinION-MinIT combination generated over two million reads for twelve samples in a six-hour sequencing run, from which a total of 72% classified as quality screened, trimmed and mapped influenza reads to produce full genome sequences. Identities between the datasets of > 99.9% were achieved, with 100% coverage of all segments alongside a sufficient confidence and 4492fold mean depth. From RNA extraction to finished sequences, only 14 h were required. Conclusions Overall, we developed and validated a novel and rapid multiplex workflow for influenza A virus sequencing. This protocol suits both clinical and academic settings, aiding in real time diagnostics and passive surveillance.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3