Identifying high risk areas of Zika virus infection by meteorological factors in Colombia

Author:

Chien Lung-ChangORCID,Sy Francisco,Pérez Adriana

Abstract

Abstract Background Several Zika virus (ZIKV) outbreaks have occurred since October 2015. Because there is no effective treatment for ZIKV infection, developing an effective surveillance and warning system is currently a high priority to prevent ZIKV infection. Despite Aedes mosquitos having been known to spread ZIKV, the calculation approach is diverse, and only applied to local areas. This study used meteorological measurements to monitor ZIKV infection due to the high correlation between climate change and Aedes mosquitos and the convenience to obtain meteorological data from weather monitoring stations. Methods This study applied the Bayesian structured additive regression modeling approach to include spatial interactive terms with meteorological factors and a geospatial function in a zero-inflated Poisson model. The study area contained 32 administrative departments in Colombia from October 2015 to December 2017. Weekly ZIKV infection cases and daily meteorological measurements were collected. Mapping techniques were adopted to visualize spatial findings. A series of model selections determined the best combinations of meteorological factors in the same model. Results When multiple meteorological factors are considered in the same model, both total rainfall and average temperature can best assess the geographic disparities of ZIKV infection. Meanwhile, a 1-in. increase in rainfall is associated with an increase in the logarithm of relative risk (logRR) of ZIKV infection of at most 1.66 (95% credible interval [CI] = 1.09, 2.15) as well as a 1 °F increase in average temperature is significantly associated with at most 0.79 (95% CI = 0.12, 1.22) increase in the logRR of ZIKV. Moreover, after controlling rainfall and average temperature, an independent geospatial function in the model results in two departments with an excessive ZIKV risk which may be explained by unobserved factors other than total rainfall and average temperature. Conclusion Our study found that meteorological factors are significantly associated with ZIKV infection across departments. The study determined both total rainfall and average temperature as the best meteorological factors to identify high risk departments of ZIKV infection. These findings can help governmental agencies monitor at risk areas according to meteorological measurements, and develop preventions in those at risk areas in priority.

Funder

Michael and Susan Dell Foundation

University of Nevada, Las Vegas

University of Texas Health Science Center at Houston-UTHealth

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3