Abstract
Abstract
Background
Current tuberculosis (TB) regimen development pathways are slow and in urgent need of innovation. We investigated novel phase IIc and seamless phase II/III trials utilizing multi-arm multi-stage and Bayesian response adaptive randomization trial designs to select promising combination regimens in a platform adaptive trial.
Methods
Clinical trial simulation tools were built using predictive and validated parametric survival models of time to culture conversion (intermediate endpoint) and time to TB-related unfavorable outcome (final endpoint). This integrative clinical trial simulation tool was used to explore and optimize design parameters for aforementioned trial designs.
Results
Both multi-arm multi-stage and Bayesian response adaptive randomization designs were able to reliably graduate desirable regimens in ≥ 95% of trial simulations and reliably stop suboptimal regimens in ≥ 90% of trial simulations. Overall, adaptive phase IIc designs reduced patient enrollment by 17% and 25% with multi-arm multi-stage and Bayesian response adaptive randomization designs respectively compared to the conventional sequential approach, while seamless designs reduced study duration by 2.6 and 3.5 years respectively (typically ≥ 8.5 years for standard sequential approach).
Conclusions
In this study, we demonstrate that adaptive trial designs are suitable for TB regimen development, and we provide plausible design parameters for a platform adaptive trial. Ultimately trial design and specification of design parameters will depend on clinical trial objectives. To support decision-making for clinical trial designs in contemporary TB regimen development, we provide a flexible clinical trial simulation tool that can be used to explore and optimize design features and parameters.
Funder
Bill and Melinda Gates Foundation
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献