A comparison of clinical development pathways to advance tuberculosis regimen development

Author:

Chang V.ORCID,Phillips P. P. J.,Imperial M. Z.,Nahid P.,Savic R. M.

Abstract

Abstract Background Current tuberculosis (TB) regimen development pathways are slow and in urgent need of innovation. We investigated novel phase IIc and seamless phase II/III trials utilizing multi-arm multi-stage and Bayesian response adaptive randomization trial designs to select promising combination regimens in a platform adaptive trial. Methods Clinical trial simulation tools were built using predictive and validated parametric survival models of time to culture conversion (intermediate endpoint) and time to TB-related unfavorable outcome (final endpoint). This integrative clinical trial simulation tool was used to explore and optimize design parameters for aforementioned trial designs. Results Both multi-arm multi-stage and Bayesian response adaptive randomization designs were able to reliably graduate desirable regimens in ≥ 95% of trial simulations and reliably stop suboptimal regimens in ≥ 90% of trial simulations. Overall, adaptive phase IIc designs reduced patient enrollment by 17% and 25% with multi-arm multi-stage and Bayesian response adaptive randomization designs respectively compared to the conventional sequential approach, while seamless designs reduced study duration by 2.6 and 3.5 years respectively (typically ≥ 8.5 years for standard sequential approach). Conclusions In this study, we demonstrate that adaptive trial designs are suitable for TB regimen development, and we provide plausible design parameters for a platform adaptive trial. Ultimately trial design and specification of design parameters will depend on clinical trial objectives. To support decision-making for clinical trial designs in contemporary TB regimen development, we provide a flexible clinical trial simulation tool that can be used to explore and optimize design features and parameters.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3