Abstract
Abstract
Background
The high-risk human papillomavirus (HR-HPV) infection is the main cause of cervical cancer development, and the most common types were included in the last approved nonavalent vaccine (9vHPV). Geographical, socioeconomic and ethnic barriers in developing countries challenge primary and secondary prevention measures of cervical cancer. We aimed to determine the prevalence of HPV infection and the viral load of HR-HPV 9vHPV-related types black women resident in rural semi-isolated communities.
Methods
A descriptive study was conducted with 273 cervical samples of women from rural communities of Southeastern Brazil. Viral DNA was amplified by PCR, the genotype was identified by Reverse Line Blot (RLB) and Restriction Fragment Length Polymorphism (RFLP), and real-time PCR was applied to determine the viral load.
Results
HPV frequency was 11.4% (31/273), associated with the presence of cytological abnormalities (32.3%; p < 0.001). Thirty-one distinct genotypes were detected; HR-HPV occurred in 64.5% (20/31) of the samples and the most prevalent type were HPV52 > 58, 59. Multiple infections occurred with up to nine different genotypes. The viral load of HR-HPV 9vHPV-related types was higher in lesions than in normal cytology cases (p = 0.04); “high” and “very high” viral load occurred in HSIL and LSIL, respectively (p = 0.04).
Conclusions
We highlight that despite the low HPV frequency in the black rural women population, the frequency of HR-HPV was high, particularly by the HR-HPV52 and 58 types. Moreover, the HR-HPV viral load increased according to the progression from normal to lesion, being a potential biomarker to identify those women at higher risk of developing cervical lesions in this population.
Funder
Fundação Estadual de Amparo à Pesquisa do Estado do Espírito Santo
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Centers for Disease Control and Prevention. Genital HPV infection—CDC fact sheet, vol. 1. Atlanta, GA: CDC; 2012. CDC Fact Sheets 2014;1–2 [cited 2019 Dec 16]. Available from: https://www.cdc.gov/std/hpv/HPV-FS-July-2017.pdf
2. Muñoz N, Castellsague X, de Gonzalez AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24:1–10.
3. Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer. 2007;121(3):621–32. https://doi.org/10.1002/ijc.22527.
4. Bruni L, Albero G, Serrano B, Mena M, Gómez D, Muñoz J, et al. ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the World. Summary Report 17 June 2019 [cited 2020 Mar 9]. Available from: https://www.hpvcentre.net/statistics/reports/XWX.pdf.
5. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191–203. https://doi.org/10.1016/S2214-109X(19)30482-6.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献