Abstract
Abstract
Background
Shanghai, as a pilot city of China to achieve the goal of eliminating hepatitis C, its strategy of allocating medical resources is a pressing problem to be solved. This study aims to infer the time-spatial clustering patterns of HCV-infected cases, and grasp the dynamic genotype distribution of HCV, thereby inform elimination strategies of HCV with efficacy and efficiency.
Methods
Reported HCV cases including their demographic information in Shanghai city from 2005 to 2018 were released from the National Infectious Disease Reporting Information System, population data at community scale, geographical layers of hospitals, communities and districts were gathered from former research. Blood samples of HCV-infected individuals were collected during 2014–2018 from 24 sentinel hospitals, HCV-antibody test, qualitative nucleic acid test and NS5B/5’UTR gene amplification were performed accordingly to determine the genotypes of the specimen. Furthermore, global and local spatial self-correlation analysis of both acute and chronic HCV infections were conducted at community scale year by year, then time-spatial clusters of acute and chronic HCV infections and HCV genotype distribution of specimen collected from sentinel hospitals by districts were mapped by using Arcmap10.1.
Results
A total of 2631 acute HCV cases and 15,063 chronic HCV cases were reported in Shanghai from 2005 to 2018, with a peak in 2010 and 2017, respectively. The mean age of chronic HCV patients was 49.70 ± 14.55 years, 3.34 ± 0.32 years older than the acute (t = 10.55, P-value < 0.01). The spatial distribution of acute HCV infection formed one primary cluster (Relative Risk = 2.71), and the chronic formed one primary cluster and three secondary clusters with Relative Risk ranged from 1.94 to 14.42, meanwhile, an overlap of 34 communities between acute and chronic HCV clusters were found with time period spans varied from 6 to 12 years. Genotype 1 (N = 257, 49.71%) was the most prevalent HCV genotype in Shanghai, genotype 3 infections have increased in recent years. Baoshan district presented cluster of acute HCV and the highest proportion of genotype 2, Pudong new area was the cluster of chronic HCV and occupied the highest proportion of genotype 3.
Conclusions
Despite the low prevalence of HCV infection, it is still needed to push forward the elimination process in Shanghai, as there is a certain amount of HCV infected people waiting to be treated. The time-spatial clustering patterns and the dynamic of HCV genotype distribution together indicated a changing constitution of different transmission routes of HCV infection, thus, a focused strategy may be needed for high-risk population related to genotype 3 infection like drug users, in addition to an enforcement of the existing measures of preventing the iatrogenic and hematogenic transmission of HCV.
Funder
National Natural Science Foundation of China
Shanghai Municipal Health Bureau
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45(4):529–38. https://doi.org/10.1016/j.jhep.2006.05.013.
2. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264-73.e1. https://doi.org/10.1053/j.gastro.2011.12.061.
3. World Health Organization. Global hepatitis report, 2017. 2017 (cited 2020 Nov 5). http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/.
4. World Health Organization. Global health sector strategy on viral hepatitis 2016–2021. 2016 (cited 2020 Nov 5). http://www.who.int/hepatitis/strategy2016-2021/ghss-hep/en/.
5. World Health Organization. Guidelines for the care and treatment of persons diagnosed with chronic hepatitis C virus infection. 2018 (cited 2020 Nov 5). https://apps.who.int/iris/handle/10665/273174.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献