Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification and induces RNA foci

Author:

Chen I-Cheng,Lin Hsuan-Yuan,Lee Ghin-Chueh,Kao Shih-Huan,Chen Chiung-Mei,Wu Yih-Ru,Hsieh-Li Hsiu-Mei,Su Ming-Tsan,Lee-Chen Guey-Jen

Abstract

Abstract Background Spinocerebellar ataxia type 8 (SCA8) involves the expression of an expanded CTG/CAG combined repeats (CR) from opposite strands producing CUG expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and a polyglutamine expansion protein (ataxin 8, ATXN8). The pathogenesis of SCA8 is complex and the spectrum of clinical presentations is broad. Results Using stably induced cell models expressing 0, 23, 88 and 157 CR, we study the role of ATXN8OS transcripts in SCA8 pathogenesis. In the absence of doxycycline, the stable ATXN8OS CR cell lines exhibit low levels of ATXN8OS expression and a repeat length-related increase in staurosporine sensitivity and in the number of annexin positive cells. A repeat length-dependent repression of ATXN8OS expression was also notable. Addition of doxycycline leads to 25~50 times more ATXN8OS RNA expression with a repeat length-dependent increase in fold of ATXN8OS RNA induction. ChIP-PCR assay using anti-dimethyl-histone H3-K9 and anti-acetyl-histone H3-K14 antibodies revealed increased H3-K9 dimethylation and reduced H3-K14 acetylation around the ATXN8OS cDNA gene in 157 CR line. The repeat length-dependent increase in induction fold is probably due to the increased RNA stability as demonstrated by monitoring ATXN8OS RNA decay in cells treated with the transcriptional inhibitor, actinomycin D. In cells stably expressing ATXN8OS, RNA FISH experiments further revealed ribonuclear foci formation in cells carrying expanded 88 and 157 CR. Conclusion The present study demonstrates that the expanded CUG-repeat tracts are toxic to human cells and may affect ATXN8OS RNA expression and stability through epigenetic and post-transcriptional mechanisms.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3