The ICP22 protein selectively modifies the transcription of different kinetic classes of pseudorabies virus genes

Author:

Takács Irma F,Tombácz Dóra,Berta Beáta,Prazsák István,Póka Nándor,Boldogkői Zsolt

Abstract

Abstract Background Pseudorabies virus (PRV), an alpha-herpesvirus of swine, is a widely used model organism in investigations of the molecular pathomechanisms of the herpesviruses. This work is the continuation of our earlier studies, in which we investigated the effect of the abrogation of gene function on the viral transcriptome by knocking out PRV genes playing roles in the coordination of global gene expression of the virus. In this study, we deleted the us1 gene encoding the ICP22, an important viral regulatory protein, and analyzed the changes in the expression of other PRV genes. Results A multi-timepoint real-time RT-PCR technique was applied to evaluate the impact of deletion of the PRV us1 gene on the overall transcription kinetics of viral genes. The mutation proved to exert a differential effect on the distinct kinetic classes of PRV genes at the various stages of lytic infection. In the us1 gene-deleted virus, all the kinetic classes of the genes were significantly down-regulated in the first hour of infection. After 2 to 6 h of infection, the late genes were severely suppressed, whereas the early genes were unaffected. In the late stage of infection, the early genes were selectively up-regulated. In the mutant virus, the transcription of the ie180 gene, the major coordinator of PRV gene expression, correlated closely with the transcription of other viral genes, a situation which was not found in the wild-type (wt) virus. A 4-h delay was observed in the commencement of DNA replication in the mutant virus as compared with the wt virus. The rate of transcription from a gene normalized to the relative copy number of the viral genome was observed to decline drastically following the initiation of DNA replication in both the wt and mutant backgrounds. Finally, the switch between the expressions of the early and late genes was demonstrated not to be controlled by DNA replication, as is widely believed, since the switch preceded the DNA replication. Conclusions Our results show a strong dependence of PRV gene expression on the presence of functional us1 gene. ICP22 is shown to exert a differential effect on the distinct kinetic classes of PRV genes and to disrupt the close correlation between the transcription kinetics of ie180 and other PRV transcripts. Furthermore, DNA replication exerts a severe constraint on the viral transcription.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3