Reverse transcription-quantitative polymerase chain reaction: description of a RIN-based algorithm for accurate data normalization

Author:

Ho-Pun-Cheung Alexandre,Bascoul-Mollevi Caroline,Assenat Eric,Boissière-Michot Florence,Bibeau Frédéric,Cellier Dominic,Ychou Marc,Lopez-Crapez Evelyne

Abstract

Abstract Background Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the gold standard technique for mRNA quantification, but appropriate normalization is required to obtain reliable data. Normalization to accurately quantitated RNA has been proposed as the most reliable method for in vivo biopsies. However, this approach does not correct differences in RNA integrity. Results In this study, we evaluated the effect of RNA degradation on the quantification of the relative expression of nine genes (18S, ACTB, ATUB, B2M, GAPDH, HPRT, POLR2L, PSMB6 and RPLP0) that cover a wide expression spectrum. Our results show that RNA degradation could introduce up to 100% error in gene expression measurements when RT-qPCR data were normalized to total RNA. To achieve greater resolution of small differences in transcript levels in degraded samples, we improved this normalization method by developing a corrective algorithm that compensates for the loss of RNA integrity. This approach allowed us to achieve higher accuracy, since the average error for quantitative measurements was reduced to 8%. Finally, we applied our normalization strategy to the quantification of EGFR, HER2 and HER3 in 104 rectal cancer biopsies. Taken together, our data show that normalization of gene expression measurements by taking into account also RNA degradation allows much more reliable sample comparison. Conclusion We developed a new normalization method of RT-qPCR data that compensates for loss of RNA integrity and therefore allows accurate gene expression quantification in human biopsies.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3