RecA Proteins from Deinococcus geothermalis and Deinococcus murrayi - Cloning, Purification and Biochemical Characterisation

Author:

Wanarska Marta,Krawczyk Beata,Hildebrandt Piotr,Kur Józef

Abstract

Abstract Background Escherichia coli RecA plays a crucial role in recombinational processes, the induction of SOS responses and mutagenic lesion bypasses. It has also been demonstrated that RecA protein is indispensable when it comes to the reassembly of shattered chromosomes in γ-irradiated Deinococcus radiodurans, one of the most radiation-resistant organisms known. Moreover, some functional differences between E. coli and D. radiodurans RecA proteins have also been shown. Results In this study, recA genes from Deinococcus geothermalis and Deinococcus murrayi, bacteria that are slightly thermophilic and extremely γ-radiation resistant, were isolated, cloned and expressed in E. coli. After production and purification, the biochemical properties of Dge RecA and Dmu RecA proteins were determined. Both proteins continued to exist in the solutions as heterogenous populations of oligomeric forms. The DNA binding by Dge RecA and Dmu RecA proteins is stimulated by Mg2+ ions. Furthermore, both proteins bind more readily to ssDNA when ssDNA and dsDNA are in the same reaction mixture. Both proteins are slightly thermostable and were completely inactivated in 10 s at 80°C. Both proteins hydrolyze ATP and dATP in the presence of ssDNA or complementary ssDNA and dsDNA, but not in the absence of DNA or in the presence of dsDNA only, and dATP was hydrolyzed more rapidly than ATP. They were also able to promote DNA strand exchange reactions by a pathway common for other RecA proteins. However, we did not obtain DNA strand exchange products when reactions were performed on an inverse pathway, characteristic for RecA of D. radiodurans. Conclusions The characterization of Dge RecA and Dmu RecA proteins made in this study indicates that the unique properties of D. radiodurans RecA are probably not common among RecA proteins from Deinococcus sp.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3