MAPKAPK5-AS1 drives the progression of hepatocellular carcinoma via regulating miR-429/ZEB1 axis

Author:

Peng Zongqing,Ouyang Xinhua,Wang Yexing,Fan Qiming

Abstract

Abstract Background Hepatocellular carcinoma (HCC) is a common malignancy. Long non-coding RNAs (lncRNAs) partake in the progression of HCC. However, the role of lncRNA MAPKAPK5-AS1 in the development of HCC has not been fully clarified. Methods RNA sequencing data and quantitative real-time polymerase chain reaction (qRT-PCR) were adopted to analyze MAPKAPK5-AS1, miR-429 and ZEB1 mRNA expressions in HCC tissues and cell lines. Western blot was used to detect ZEB1, E-cadherin and N-cadherin protein expressions. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and flow cytometry assays were adopted to analyze the effects of MAPKAPK5-AS1 on cell proliferation, migration, invasion and apoptosis. Besides, luciferase reporter assay was used to detect the targeting relationship between miR-429 and MAPKAPK5-AS1 or ZEB1 3’UTR. The xenograft tumor mouse models were used to explore the effect of MAPKAPK5-AS1 on lung metastasis of HCC cells. Results MAPKAPK5-AS1 and ZEB1 expressions were up-regulated in HCC tissues, and miR-429 expression is down-regulated in HCC tissues. MAPKAPK5-AS1 knockdown could significantly impede HCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), as well as promote cell apoptosis. MAPKAPK5-AS1 overexpression could enhance L02 cell proliferation, migration, invasion and EMT, and inhibit cell apoptosis. MiR-429 was validated to be the target of MAPKAPK5-AS1, and miR-429 inhibitors could partially offset the effects of knocking down MAPKAPK5-AS1 on HCC cells. MAPKAPK5-AS1 could positively regulate ZEB1 expression through repressing miR-429. Moreover, fewer lung metastatic nodules were observed in the lung tissues of nude mice when the MAPKAPK5-AS1 was knocked down in HCC cells. Conclusion MAPKAPK5-AS1 can adsorb miR-429 to promote ZEB1 expression to participate in the development of HCC.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3