Analyses of the folding sites of irregular β-trefoil fold proteins through sequence-based techniques and Gō-model simulations

Author:

Kimura Risako,Aumpuchin Panyavut,Hamaue Shoya,Shimomura Takumi,Kikuchi Takeshi

Abstract

Abstract Background The details of the folding mechanisms have not yet been fully understood for many proteins, and it is believed that the information on the folding mechanism of a protein is encoded in its amino acid sequence. β-trefoil proteins are known to have the same 3D scaffold, namely, a three-fold symmetric scaffold, despite the proteins’ low sequence identity among superfamilies. In this study, we extract an initial folding unit from the amino acid sequences of irregular β-trefoil proteins by constructing an average distance map (ADM) and utilizing inter-residue average distance statistics to determine the relative contact frequencies for residue pairs in terms of F values. We compare our sequence-based prediction results with the packing between hydrophobic residues in native 3D structures and a Gō-model simulation. Results The ADM and F-value analyses predict that the N-terminal and C-terminal regions are compact and that the hydrophobic residues at the central region can be regarded as an interaction center with other residues. These results correspond well to those of the Gō-model simulations. Moreover, our results indicate that the irregular parts in the β-trefoil proteins do not hinder the protein formation. Conserved hydrophobic residues on the β5 strand are always the interaction center of packing between the conserved hydrophobic residues in both regular and irregular β-trefoil proteins. Conclusions We revealed that the β5 strand plays an important role in β-trefoil protein structure construction. The sequence-based methods used in this study can extract the protein folding information from only amino acid sequence data, and well corresponded to 3D structure-based Gō-model simulation and available experimental results.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3