Urine-derived mesenchymal stem cells-derived exosomes enhances survival and proliferation of aging retinal ganglion cells

Author:

Dan Qi-Qin,Chen Li,shi Lan-Lan,Zhou Xiu,Wang Ting-Hua,Liu Hua

Abstract

Abstract Objectives This study was designed to investigate to test the effect of exosomes from urine-derived mesenchymal stem cells (USCs) on the survival and viability of aging retinal ganglion cells (RGCs), and explored the preliminary related mechanisms. Methods Primary USCs were cultured and identified by immunofluorescence staining. Aging RGCs models were established by D-galactose treatment and identified by β-Galactosidase staining. After treatment with USCs conditioned medium (with USCs removal), flow cytometry was performed to examine the apoptosis and cell cycle of RGCs. Cell viability of RGCs was detected by Cell-counting Kit 8 (CCK8) assay. Moreover, gene sequencing and bioinformatics analysis were applied to analyze the genetic variation after medium treatment in RGCs along with the biological functions of differentially expressed genes (DEGs). Results The number of apoptotic aging RGCs was significantly reduced in USCs medium-treated RGCs. Besides, USCs-derived exosomes exert significant promotion on the cell viability and proliferation of aging RGCs. Further, sequencing data analyzed and identified DEGs expressed in aging RGCs and aging RGCs treated with USCs conditioned medium. The sequencing outcomes demonstrated 117 upregulated genes and 186 downregulated genes in normal RGCs group vs aging RGCs group, 137 upregulated ones and 517 downregulated ones in aging RGCs group vs aging RGCs + USCs medium group. These DEGs involves in numerous positive molecular activities to promote the recovery of RGCs function. Conclusions Collectively, the therapeutic potentials of USCs-derived exosomes include suppression on cell apoptosis, enhancement on cell viability and proliferation of aging RGCs. The underlying mechanism involves multiple genetic variation and changes of transduction signaling pathways.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3